IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2023i8p6837-d1126634.html
   My bibliography  Save this article

Comparative Study on Strategies for the Division of Earthquake-Proof Strengthening Segments to Reinforce the Reliability of Water Supply Systems

Author

Listed:
  • Chan-Wook Lee

    (Water and Sewage Department, Korea Engineering Consultants Corporation, 21, Sangil-ro 6-gil, Gangdong-gu, Seoul 05288, Republic of Korea)

  • Do-Guen Yoo

    (Department of Civil Engineering, University of Suwon, Hwaseong-si 18323, Republic of Korea)

Abstract

It is very important to secure the sustainability of physical and non-physical social infrastructure facilities in the event of a disaster. The water supply network is particularly vulnerable to seismic damage, and so physical earthquake resistance is very necessary to adapt to or withstand disaster situations. This study evaluated various strategic methods to improve the reliability of water distribution network systems in the event of an earthquake disaster with a focus on structural earthquake-proofing methods for pipelines. For this purpose, three major flow-, diameter- and connection-hierarchy-based earthquake proofing strategies are proposed. We quantified the extent to which earthquake reliability improved after the strengthening of the earthquake-proofing of the pipeline segments, which had been divided based on the proposed strategies. The proposed methodology of dividing the pipeline segments for earthquake-proof strengthening was applied to the water supply system of the Republic of Korea and analyzed thereafter. As a result, it was confirmed that the associated costs and the extent of the improvement in the reliability of earthquake proofing for each strategy and scenario need to be precisely analyzed. Thus, it is necessary to execute strategic earthquake proofing of pipelines with medium size diameters and which occupy most of the length of a mainline, in order to simultaneously satisfy the reliability and cost efficiency of the relevant water supply. However, additional earthquake proofing for segments of a higher level of flowrate is required because a marked drop in overall reliability is caused if they are damaged. In addition, because the effect of an increase in reliability in comparison with the costs incurred is insignificant in the case of some low demand and small-diameter pipeline segments, it is reasonable to exclude earthquake resistance strategies for these sections. The proposed study results—determining the level of importance of each resistance method—can be utilized to make a combined plan for optimal earthquake-proofing strategies.

Suggested Citation

  • Chan-Wook Lee & Do-Guen Yoo, 2023. "Comparative Study on Strategies for the Division of Earthquake-Proof Strengthening Segments to Reinforce the Reliability of Water Supply Systems," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
  • Handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6837-:d:1126634
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/8/6837/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/8/6837/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ouyang, Min & Wang, Zhenghua, 2015. "Resilience assessment of interdependent infrastructure systems: With a focus on joint restoration modeling and analysis," Reliability Engineering and System Safety, Elsevier, vol. 141(C), pages 74-82.
    2. Jeongwook Choi & Do Guen Yoo & Doosun Kang, 2018. "Post-Earthquake Restoration Simulation Model for Water Supply Networks," Sustainability, MDPI, vol. 10(10), pages 1-17, October.
    3. Zhao Han & Donghui Ma & Benwei Hou & Wei Wang, 2020. "Seismic Resilience Enhancement of Urban Water Distribution System Using Restoration Priority of Pipeline Damages," Sustainability, MDPI, vol. 12(3), pages 1-22, January.
    4. Yoo, Do Guen & Kang, Doosun & Kim, Joong Hoon, 2016. "Optimal design of water supply networks for enhancing seismic reliability," Reliability Engineering and System Safety, Elsevier, vol. 146(C), pages 79-88.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeongwook Choi & Doosun Kang, 2020. "Improved Hydraulic Simulation of Valve Layout Effects on Post-Earthquake Restoration of a Water Distribution Network," Sustainability, MDPI, vol. 12(8), pages 1-20, April.
    2. Xiang He & Yongbo Yuan, 2019. "A Framework of Identifying Critical Water Distribution Pipelines from Recovery Resilience," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 33(11), pages 3691-3706, September.
    3. Zhao Han & Donghui Ma & Benwei Hou & Wei Wang, 2020. "Seismic Resilience Enhancement of Urban Water Distribution System Using Restoration Priority of Pipeline Damages," Sustainability, MDPI, vol. 12(3), pages 1-22, January.
    4. Trucco, Paolo & Petrenj, Boris, 2023. "Characterisation of resilience metrics in full-scale applications to interdependent infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    5. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & Small, Michael & Li, Man, 2023. "Improving resilience of high-speed train by optimizing repair strategies," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    6. Pei, Shunshun & Zhai, Changhai & Hu, Jie, 2024. "Surrogate model-assisted seismic resilience assessment of the interdependent transportation and healthcare system considering a two-stage recovery strategy," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    7. Yang, Bofan & Zhang, Lin & Zhang, Bo & Xiang, Yang & An, Lei & Wang, Wenfeng, 2022. "Complex equipment system resilience: Composition, measurement and element analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    8. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    9. Liu, Huan & Tatano, Hirokazu & Pflug, Georg & Hochrainer-Stigler, Stefan, 2021. "Post-disaster recovery in industrial sectors: A Markov process analysis of multiple lifeline disruptions," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    10. Maddah, Negin & Heydari, Babak, 2024. "Building back better: Modeling decentralized recovery in sociotechnical systems using strategic network dynamics," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    11. Kameshwar, Sabarethinam & Cox, Daniel T. & Barbosa, Andre R. & Farokhnia, Karim & Park, Hyoungsu & Alam, Mohammad S. & van de Lindt, John W., 2019. "Probabilistic decision-support framework for community resilience: Incorporating multi-hazards, infrastructure interdependencies, and resilience goals in a Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    12. Lu, Qing-Chang & Xu, Peng-Cheng & Zhao, Xiangmo & Zhang, Lei & Li, Xiaoling & Cui, Xin, 2022. "Measuring network interdependency between dependent networks: A supply-demand-based approach," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    13. Poulin, Craig & Kane, Michael B., 2021. "Infrastructure resilience curves: Performance measures and summary metrics," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    14. Han, Lin & Zhao, Xudong & Chen, Zhilong & Gong, Huadong & Hou, Benwei, 2021. "Assessing resilience of urban lifeline networks to intentional attacks," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    15. Fang, Yi-Ping & Sansavini, Giovanni, 2019. "Optimum post-disruption restoration under uncertainty for enhancing critical infrastructure resilience," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 1-11.
    16. Xu, Min & Ouyang, Min & Hong, Liu & Mao, Zijun & Xu, Xiaolin, 2022. "Resilience-driven repair sequencing decision under uncertainty for critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    17. Haritha, P.C. & Anjaneyulu, M.V.L.R., 2024. "Comparison of topological functionality-based resilience metrics using link criticality," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    18. Yifan Yang & S. Thomas Ng & Frank J. Xu & Martin Skitmore & Shenghua Zhou, 2019. "Towards Resilient Civil Infrastructure Asset Management: An Information Elicitation and Analytical Framework," Sustainability, MDPI, vol. 11(16), pages 1-24, August.
    19. Hui Xu & Shuxiu Li & Yongtao Tan & Bin Xing, 2022. "Comprehensive Resilience Assessment of Complex Urban Public Spaces: A Perspective of Promoting Sustainability," Land, MDPI, vol. 11(6), pages 1-23, June.
    20. Zhao, S. & Liu, X. & Zhuo, Y., 2017. "Hybrid Hidden Markov Models for resilience metrics in a dynamic infrastructure system," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 84-97.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2023:i:8:p:6837-:d:1126634. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.