IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v251y2024ics0951832024004149.html
   My bibliography  Save this article

Inspection of hydrogen transport equipment: A data-driven approach to predict fatigue degradation

Author

Listed:
  • Campari, Alessandro
  • Ustolin, Federico
  • Alvaro, Antonio
  • Paltrinieri, Nicola

Abstract

Hydrogen is an environmentally friendly fuel that can facilitate the upcoming energy transition. The development of an extensive infrastructure for hydrogen transport and storage is crucial. However, the mechanical properties of structural materials are significantly degraded in H2 environments, leading to early component failures. Pipelines are designed following defect-tolerant principles and are subjected to periodic pressure fluctuations. Hence, these systems are potentially prone to fatigue degradation, often accelerated in pressurized hydrogen gas. Inspection and maintenance activities are crucial to guarantee the integrity and fitness for service of this infrastructure. This study predicts the severity of hydrogen-enhanced fatigue in low-alloy steels commonly employed for H2 transport and storage equipment. Three machine-learning algorithms, i.e., Linear Model, Deep Neural Network, and Random Forest, are used to categorize the severity of the fatigue degradation. The models are critically compared, and the best-performing algorithm is trained to predict the Fatigue Acceleration Factor. This approach shows good prediction capability and can estimate the fatigue crack propagation in low-alloy steels. These results allow for estimating the probability of failure of hydrogen pipelines, thus facilitating the inspection and maintenance planning.

Suggested Citation

  • Campari, Alessandro & Ustolin, Federico & Alvaro, Antonio & Paltrinieri, Nicola, 2024. "Inspection of hydrogen transport equipment: A data-driven approach to predict fatigue degradation," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004149
    DOI: 10.1016/j.ress.2024.110342
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024004149
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110342?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.