Manifold-based Conditional Bayesian network for aging pipe yield strength estimation with non-destructive measurements
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2022.108447
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Su, Yue & Li, Jingfa & Yu, Bo & Zhao, Yanlin & Yao, Jun, 2021. "Fast and accurate prediction of failure pressure of oil and gas defective pipelines using the deep learning model," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- Restrepo, Carlos E. & Simonoff, Jeffrey S. & Zimmerman, Rae, 2009. "Causes, cost consequences, and risk implications of accidents in US hazardous liquid pipeline infrastructure," International Journal of Critical Infrastructure Protection, Elsevier, vol. 2(1), pages 38-50.
- Michael J McGeachie & Hsun-Hsien Chang & Scott T Weiss, 2014. "CGBayesNets: Conditional Gaussian Bayesian Network Learning and Inference with Mixed Discrete and Continuous Data," PLOS Computational Biology, Public Library of Science, vol. 10(6), pages 1-7, June.
- Zhang, Y. & Weng, W.G., 2020. "Bayesian network model for buried gas pipeline failure analysis caused by corrosion and external interference," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
- Tang, Kayu & Parsons, David J. & Jude, Simon, 2019. "Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 24-36.
- Liu, Cuiwei & Wang, Yazhen & Li, Xinhong & Li, Yuxing & Khan, Faisal & Cai, Baoping, 2021. "Quantitative assessment of leakage orifices within gas pipelines using a Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
- Yang, Yang & Li, Suzhen & Zhang, Pengcheng, 2022. "Data-driven accident consequence assessment on urban gas pipeline network based on machine learning," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
- Wang, Zifeng & Li, Suzhen, 2020. "Data-driven risk assessment on urban pipeline network based on a cluster model," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Subramanian, Abhinav & Mahadevan, Sankaran, 2023. "Probabilistic physics-informed machine learning for dynamic systems," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Na, Kyumin & Yoon, Heonjun & Kim, Jaedong & Kim, Sungjong & Youn, Byeng D., 2023. "PERL: Probabilistic energy-ratio-based localization for boiler tube leaks using descriptors of acoustic emission signals," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Wang, Ying & Zheng, Xueke & Wang, Le & Lu, Gavin & Jia, Yixing & Li, Kezhi & Li, Mian, 2023. "Sensor fault detection of vehicle suspension systems based on transmissibility operators and Neyman–Pearson test," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
- Yang, Zhen & Dong, Xiaobin & Guo, Li, 2023. "Scenario inference model of urban metro system cascading failure under extreme rainfall conditions," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
- Zhang, Qiongfang & Yan, Hao & Liu, Yongming, 2024. "Power generation forecasting for solar plants based on Dynamic Bayesian networks by fusing multi-source information," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhou, Jie & Lin, Haifei & Li, Shugang & Jin, Hongwei & Zhao, Bo & Liu, Shihao, 2023. "Leakage diagnosis and localization of the gas extraction pipeline based on SA-PSO BP neural network," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
- Chen, Yinuo & Xie, Shuyi & Tian, Zhigang, 2022. "Risk assessment of buried gas pipelines based on improved cloud-variable weight theory," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
- Li, Pengyu & Wang, Xiufang & Jiang, Chunlei & Bi, Hongbo & Liu, Yongzhi & Yan, Wendi & Zhang, Cong & Dong, Taiji & Sun, Yu, 2024. "Advanced transformer model for simultaneous leakage aperture recognition and localization in gas pipelines," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
- Hassan, Shamsu & Wang, Jin & Kontovas, Christos & Bashir, Musa, 2022. "An assessment of causes and failure likelihood of cross-country pipelines under uncertainty using bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
- Yin, Yuanbo & Yang, Hao & Duan, Pengfei & Li, Luling & Zio, Enrico & Liu, Cuiwei & Li, Yuxing, 2022. "Improved quantitative risk assessment of a natural gas pipeline considering high-consequence areas," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
- Chen, Zhanfeng & Li, Xuyao & Wang, Wen & Li, Yan & Shi, Lei & Li, Yuxing, 2023. "Residual strength prediction of corroded pipelines using multilayer perceptron and modified feedforward neural network," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
- Yang, Yang & Li, Suzhen & Zhang, Pengcheng, 2022. "Data-driven accident consequence assessment on urban gas pipeline network based on machine learning," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
- Lingyun, Guo & Markus, Niffenegger & Jing, Zhou, 2022. "A novel procedure to evaluate the performance of failure assessment models," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
- Fan, Xudong & Wang, Xiaowei & Zhang, Xijin & ASCE Xiong (Bill) Yu, P.E.F., 2022. "Machine learning based water pipe failure prediction: The effects of engineering, geology, climate and socio-economic factors," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
- Ballester-Ripoll, Rafael & Leonelli, Manuele, 2022. "Computing Sobol indices in probabilistic graphical models," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
- Zhang, Qiongfang & Yan, Hao & Liu, Yongming, 2024. "Power generation forecasting for solar plants based on Dynamic Bayesian networks by fusing multi-source information," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
- Vaezi, Ali & Verma, Manish, 2018. "Railroad transportation of crude oil in Canada: Developing long-term forecasts, and evaluating the impact of proposed pipeline projects," Journal of Transport Geography, Elsevier, vol. 69(C), pages 98-111.
- Qianxiang Zhu & Yuanqing Qin & Yue Zhao & Zhou Chunjie, 2020. "A hierarchical colored Petri net–based cyberattacks response strategy making approach for critical infrastructures," International Journal of Distributed Sensor Networks, , vol. 16(1), pages 15501477198, January.
- Siler-Evans, Kyle & Hanson, Alex & Sunday, Cecily & Leonard, Nathan & Tumminello, Michele, 2014. "Analysis of pipeline accidents in the United States from 1968 to 2009," International Journal of Critical Infrastructure Protection, Elsevier, vol. 7(4), pages 257-269.
- Moahamed Younes El Bouti & Mohamed Allouch, 2018. "Analysis of 801 Work-Related Incidents in the Oil and Gas Industry That Occurred Between 2014 and 2016 in 6 Regions," Energy and Environment Research, Canadian Center of Science and Education, vol. 8(1), pages 1-32, June.
- Zhaoming Yang & Qi Xiang & Yuxuan He & Shiliang Peng & Michael Havbro Faber & Enrico Zio & Lili Zuo & Huai Su & Jinjun Zhang, 2023. "Resilience of Natural Gas Pipeline System: A Review and Outlook," Energies, MDPI, vol. 16(17), pages 1-19, August.
- Tao, Haohan & Jia, Peng & Wang, Xiangyu & Wang, Liquan, 2024. "Reliability analysis of subsea control module based on dynamic Bayesian network and digital twin," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
- Bo, Yimin & Bao, Minglei & Ding, Yi & Hu, Yishuang, 2024. "A DNN-based reliability evaluation method for multi-state series-parallel systems considering semi-Markov process," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
- Wang, Chang & Zheng, Jianqin & Liang, Yongtu & Wang, Bohong & Klemeš, Jiří Jaromír & Zhu, Zhu & Liao, Qi, 2022. "Deeppipe: An intelligent monitoring framework for operating condition of multi-product pipelines," Energy, Elsevier, vol. 261(PB).
- Wang, WuChang & Zhang, Yi & Li, YuXing & Hu, Qihui & Liu, Chengsong & Liu, Cuiwei, 2022. "Vulnerability analysis method based on risk assessment for gas transmission capabilities of natural gas pipeline networks," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
More about this item
Keywords
Aging pipe; Reliability; Strength estimation; Bayesian network; Manifold learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:223:y:2022:i:c:s0951832022001120. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.