IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v253y2025ics0951832024006665.html
   My bibliography  Save this article

Robustness analysis of smart manufacturing systems against resource failures: A two-layered network perspective

Author

Listed:
  • Song, Zhiting
  • Zhu, Jianhua
  • Chen, Kun

Abstract

Complex and changing environments often cause resource failures in smart manufacturing systems (SMSs), significantly affecting their robustness. This paper introduces a novel methodology to assess the robustness of SMSs facing resource failures, using a complex network approach. It divides SMSs into social and technical layers, analyzes resources and relationships within and between these layers, and establishes a two-layered network model. It also categorizes various types of failures and proposes three robustness metrics to evaluate system performance at individual, local, and global levels. Simulations visually demonstrate the methodology and key findings: (1) the robust-but-fragile trait of SMSs only reacts to node failures and keeps significant in terms of the gradient of robustness; (2) there exists no edge failure that keeps damaging system robustness to the maximal or minimal degrees, and edge failures cause less damage to system robustness than node failures; (3) when failures occur, SMS robustness at all levels changes with inconsistent paces, and the optimal link mode varies by network structures and failure strategies. Finally, managerial implications are presented to guide practical robustness control at different stages of SMS lifecycles.

Suggested Citation

  • Song, Zhiting & Zhu, Jianhua & Chen, Kun, 2025. "Robustness analysis of smart manufacturing systems against resource failures: A two-layered network perspective," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006665
    DOI: 10.1016/j.ress.2024.110595
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024006665
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110595?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.