IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v250y2024ics0951832024003545.html
   My bibliography  Save this article

Operation risk assessment of Flexible Manufacturing Networks subject to quality-reliability coupling

Author

Listed:
  • Wang, Xin
  • Ke, Yongwei
  • Cai, Zhiqiang
  • Ye, Zhenggeng

Abstract

In flexible manufacturing network (FMN), the growth of product types increases the diversity of interacting behaviors between machine reliability and product quality, and the product diversity and machine flexibility promote the explosion of processing routes and processing sequences, increasing the gap between current risk evaluation of manufacturing systems and engineering practice. To fill this gap, a novel operation risk assessment framework is constructed for the complex FMN. In detail, to model the reliability-quality interactions, a mathematical framework describing a complete manufacturing process involving "feedstock quality (Q1) - machine degradation (R) - product processing quality (Q2) - quality inspection status (I)" is proposed for complex FMN, solving the measurement of interacting behaviors between machine reliability and product quality in an FMN that suffers from both multiple process routes and multi-type products. Then, an effective evaluation framework is proposed to evaluate the connectivity risk of multiple process routes and the quality risk of multiple product types in a complex FMN, providing a concurrent solution for risk evaluation under both complex system structures and complex quality-reliability interrelationships. At last, a simulation experiment verifies the effectiveness of our proposed methods and reveals differences in the operation risk of different product types in an FMN.

Suggested Citation

  • Wang, Xin & Ke, Yongwei & Cai, Zhiqiang & Ye, Zhenggeng, 2024. "Operation risk assessment of Flexible Manufacturing Networks subject to quality-reliability coupling," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
  • Handle: RePEc:eee:reensy:v:250:y:2024:i:c:s0951832024003545
    DOI: 10.1016/j.ress.2024.110282
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024003545
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110282?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Jintao & Gui, Maolei & Ding, Rui & Dai, Tao & Zheng, Mengyan & Men, Xinhong & Meng, Fanpeng & Yu, Tao & Sui, Yang, 2023. "A new approach for dynamic reliability analysis of reactor protection system for HPR1000," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    2. Yao, Jinyong & Gao, Zhanfei & He, Yihai & Peng, Chong, 2024. "Integrated mission reliability modeling for multistate manufacturing systems considering heterogeneous feedstocks based on extended stochastic flow manufacturing network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Ye, Zhenggeng & Yang, Hui & Cai, Zhiqiang & Si, Shubin & Zhou, Fuli, 2021. "Performance evaluation of serial-parallel manufacturing systems based on the impact of heterogeneous feedstocks on machine degradation," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    4. Bouslah, Bassem & Gharbi, Ali & Pellerin, Robert, 2018. "Joint production, quality and maintenance control of a two-machine line subject to operation-dependent and quality-dependent failures," International Journal of Production Economics, Elsevier, vol. 195(C), pages 210-226.
    5. Zhang, Tian & Homri, Lazhar & Dantan, Jean-Yves & Siadat, Ali, 2023. "Models for reliability assessment of reconfigurable manufacturing system regarding configuration orders," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    6. Liu, Yu & Liu, Qinzhen & Xie, Chaoyang & Wei, Fayuan, 2019. "Reliability assessment for multi-state systems with state transition dependency," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 276-288.
    7. Yang, Xiuzhen & He, Yihai & Liao, Ruoyu & Cai, Yuqi & Ai, Jun, 2022. "Integrated mission reliability modeling based on extended quality state task network for intelligent multistate manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Shuaichong & Nourelfath, Mustapha & Nahas, Nabil, 2023. "Analysis of a production line subject to degradation and preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    2. Li, Yao & He, Yihai & Ai, Jun & Wang, Chengcheng & Han, Xiao & Liao, Ruoyu & Yang, Xiuzhen, 2022. "Functional health prognosis approach of multi-station manufacturing system considering coupling operational factors," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    3. Wen, Tao & Gao, Qiuya & Chen, Yu-wang & Cheong, Kang Hao, 2022. "Exploring the vulnerability of transportation networks by entropy: A case study of Asia–Europe maritime transportation network," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    4. Azizi, Fariba & Salari, Nooshin, 2023. "A novel condition-based maintenance framework for parallel manufacturing systems based on bivariate birth/birth–death processes," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    5. Zhou, Jing & Liu, Yu & Liang, Decui & Tang, Maochun, 2023. "A new risk analysis approach to seek best production action during new product introduction," International Journal of Production Economics, Elsevier, vol. 262(C).
    6. Tang, Maochun & Xiahou, Tangfan & Liu, Yu, 2023. "Mission performance analysis of phased-mission systems with cross-phase competing failures," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    7. Tao, Haohan & Jia, Peng & Wang, Xiangyu & Wang, Liquan, 2024. "Reliability analysis of subsea control module based on dynamic Bayesian network and digital twin," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    8. Havinga, Maik J.A. & de Jonge, Bram, 2020. "Condition-based maintenance in the cyclic patrolling repairman problem," International Journal of Production Economics, Elsevier, vol. 222(C).
    9. Azimpoor, Samareh & Taghipour, Sharareh, 2021. "Joint inspection and product quality optimization for a system with delayed failure," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Dui, Hongyan & Meng, Xueyu & Xiao, Hui & Guo, Jianjun, 2020. "Analysis of the cascading failure for scale-free networks based on a multi-strategy evolutionary game," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    11. Panagiotis D. Paraschos & Georgios K. Koulinas & Dimitrios E. Koulouriotis, 2024. "A reinforcement learning/ad-hoc planning and scheduling mechanism for flexible and sustainable manufacturing systems," Flexible Services and Manufacturing Journal, Springer, vol. 36(3), pages 714-736, September.
    12. Huang, Ding-Hsiang, 2024. "An algorithm to generate all d-lower boundary points for a stochastic flow network using dynamic flow constraints," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    13. Dai, Le & Guo, Junyu & Wan, Jia-Lun & Wang, Jiang & Zan, Xueping, 2022. "A reliability evaluation model of rolling bearings based on WKN-BiGRU and Wiener process," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    14. Yu, Yaocheng & Shuai, Bin & Huang, Wencheng, 2024. "Resilience evaluation of train control on-board system considering common cause failure: Based on a beta-factor and continuous-time bayesian network model," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    15. Liao, Ruoyu & He, Yihai & Feng, Tianyu & Yang, Xiuzhen & Dai, Wei & Zhang, Weifang, 2023. "Mission reliability-driven risk-based predictive maintenance approach of multistate manufacturing system," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    16. Yao, Jinyong & Gao, Zhanfei & He, Yihai & Peng, Chong, 2024. "Integrated mission reliability modeling for multistate manufacturing systems considering heterogeneous feedstocks based on extended stochastic flow manufacturing network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    17. Li, Xiang-Yu & Xiong, Xiaoyan & Guo, Junyu & Huang, Hong-Zhong & Li, Xiaopeng, 2022. "Reliability assessment of non-repairable multi-state phased mission systems with backup missions," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    18. Jiang, Shan & Li, Yan-Fu, 2021. "Dynamic Reliability Assessment of Multi-cracked Structure under Fatigue Loading via Multi-State Physics Model," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    19. Wang, Wenzhuo & He, Yihai & Liao, Ruoyu & Cai, Yuqi & Zheng, Xin & Zhao, Yu, 2022. "Mission reliability driven functional healthy state modeling approach considering production rhythm and workpiece quality for manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    20. Wu, Congshan & Zhao, Xian & Qiu, Qingan & Sun, Jinglei, 2021. "Optimal mission abort policy for k-out-of-n: F balanced systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:250:y:2024:i:c:s0951832024003545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.