IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v251y2024ics0951832024004563.html
   My bibliography  Save this article

Identifying critical nodes in interdependent networks by GA-XGBoost

Author

Listed:
  • Zhong, Xingju
  • Liu, Renjing

Abstract

Once a critical node is destroyed, the interdependent network is prone to experience severe cascading failure. Due to the coupling, traditional methods are challenging to apply to interdependent networks. Here, we propose a novel comprehensive model based on machine learning. The main work of this data-driven approach is to train the model on a small set of nodes (5 % of the graph) and do the critical node identification on the rest. We collect node centrality indicators to describe the node features and provide informative input data from different dimensions. The uniform node sampling is improved to cluster oversampling, which combines K-means and Synthetic Minority Over-sampling Technique (SMOTE) to select and recreate uniformly distributed training samples. We optimize the XGBoost based on the Genetic algorithm (GA) to overcome the instability of manual parameters. Kendall's Ï„ correlation coefficient, Jaccard similarity coefficient, R2, and RMSE are used as the model performance evaluation metrics. Experiment results confirm that the proposed GA-XGBoost model outperforms others, demonstrating higher adaptability and stability in various situations. The heuristic algorithm-optimized machine learning model offers a viable solution for identifying critical nodes in interdependent networks, which is of great significance for controlling virus propagation and preventing failures.

Suggested Citation

  • Zhong, Xingju & Liu, Renjing, 2024. "Identifying critical nodes in interdependent networks by GA-XGBoost," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004563
    DOI: 10.1016/j.ress.2024.110384
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024004563
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110384?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004563. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.