IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v244y2024ics0951832024000152.html
   My bibliography  Save this article

Accident spread and risk propagation mechanism in complex industrial system network

Author

Listed:
  • Feng, Jian Rui
  • Zhao, Meng-ke
  • Lu, Shou-xiang

Abstract

Due to the increasing complexity of complex industrial systems, it's indispensable to analyze the process of accident spread and risk propagation on complex systems. An epidemiological model was used to study the phenomena of accident spread and risk propagation in complex industrial systems. It explains the mechanism and pattern of accident spread and risk propagation in complex industrial network, establishes a dynamic model for risk propagation in complex industrial network. The research findings are as follows: (1) In complex industrial systems networks, risk decreases when risk propagation velocity is below a threshold, but it increases and approaches a nonzero equilibrium point when risk propagation exceeds the threshold. (2) The risk propagation threshold is positively linked to information integrity, system robustness, and resilience, while it is negatively associated with the risk preference of management personnel. The risk propagation range decreases as the risk propagation threshold increases. (3) A higher average network degree leads to a higher risk propagation threshold and a smaller risk propagation range. Conversely, network heterogeneity has the opposite effect on the risk propagation threshold and range compared to the average degree. The research conclusions have important theoretical and practical implications for risk management in complex industrial systems.

Suggested Citation

  • Feng, Jian Rui & Zhao, Meng-ke & Lu, Shou-xiang, 2024. "Accident spread and risk propagation mechanism in complex industrial system network," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:reensy:v:244:y:2024:i:c:s0951832024000152
    DOI: 10.1016/j.ress.2024.109940
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024000152
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.109940?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Yunwei & Parhizkar, Tarannom & Mosleh, Ali, 2022. "Guided simulation for dynamic probabilistic risk assessment of complex systems: Concept, method, and application," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    2. Louis Anthony (Tony) Cox, 2012. "Confronting Deep Uncertainties in Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 32(10), pages 1607-1629, October.
    3. Huang, Wencheng & Zhou, Bowen & Yu, Yaocheng & Yin, Dezhi, 2021. "Vulnerability analysis of road network for dangerous goods transportation considering intentional attack: Based on Cellular Automata," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    4. Feng, Jian Rui & Yu, Guanghui & Zhao, Mengke & Zhang, Jiaqing & Lu, Shouxiang, 2022. "Dynamic risk assessment framework for industrial systems based on accidents chain theory: The case study of fire and explosion risk of UHV converter transformer," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    5. Wang, Ning & Gao, Ying & He, Jia-tao & Yang, Jun, 2022. "Robustness evaluation of the air cargo network considering node importance and attack cost," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    6. Ma, Xiaoxue & Deng, Wanyi & Qiao, Weiliang & Lan, He, 2022. "A methodology to quantify the risk propagation of hazardous events for ship grounding accidents based on directed CN," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    7. Wang, Jiepeng & Zhou, Hong & Jin, Xiaodan, 2021. "Risk transmission in complex supply chain network with multi-drivers," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    8. Gjorgiev, Blazhe & Sansavini, Giovanni, 2022. "Identifying and assessing power system vulnerabilities to transmission asset outages via cascading failure analysis," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    9. Liang, Zhenglin & Jiang, Chen & Sun, Muxia & Xue, Zongqi & Li, Yan-Fu, 2023. "Resilience analysis for confronting the spreading risk of contagious diseases," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    10. Chen, Duanbing & Lü, Linyuan & Shang, Ming-Sheng & Zhang, Yi-Cheng & Zhou, Tao, 2012. "Identifying influential nodes in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(4), pages 1777-1787.
    11. Afshin Jamshidi & Daoud Ait-kadi & Angel Ruiz & Mohamed Larbi Rebaiaia, 2018. "Dynamic risk assessment of complex systems using FCM," International Journal of Production Research, Taylor & Francis Journals, vol. 56(3), pages 1070-1088, February.
    12. Ortwin Renn & Klaus Lucas & Armin Haas & Carlo Jaeger, 2019. "Things are different today: the challenge of global systemic risks," Journal of Risk Research, Taylor & Francis Journals, vol. 22(4), pages 401-415, April.
    13. Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
    14. Ding, Rui & Liu, Zehua & Xu, Jintao & Meng, Fanpeng & Sui, Yang & Men, Xinhong, 2021. "A novel approach for reliability assessment of residual heat removal system for HPR1000 based on failure mode and effect analysis, fault tree analysis, and fuzzy Bayesian network methods," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    15. Yacov Y. Haimes, 2018. "Risk Modeling of Interdependent Complex Systems of Systems: Theory and Practice," Risk Analysis, John Wiley & Sons, vol. 38(1), pages 84-98, January.
    16. Meng, Xueyu & Han, Sijie & Wu, Leilei & Si, Shubin & Cai, Zhiqiang, 2022. "Analysis of epidemic vaccination strategies by node importance and evolutionary game on complex networks," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    17. Yao, Qianyi & Fan, Ruguo & Chen, Rongkai & Qian, Rourou, 2023. "A model of the enterprise supply chain risk propagation based on partially mapping two-layer complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
    18. Yusi Cheng & Jingfeng Yuan & Lei Zhu & Wei Li, 2020. "Risk Propagation Model and Simulation of Schedule Change in Construction Projects: A Complex Network Approach," Complexity, Hindawi, vol. 2020, pages 1-12, December.
    19. Dirk Helbing, 2013. "Globally networked risks and how to respond," Nature, Nature, vol. 497(7447), pages 51-59, May.
    20. Rebello, Sinda & Yu, Hongyang & Ma, Lin, 2019. "An integrated approach for real-time hazard mitigation in complex industrial processes," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 297-309.
    21. Gilberto Montibeller & Detlof von Winterfeldt, 2015. "Cognitive and Motivational Biases in Decision and Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 35(7), pages 1230-1251, July.
    22. Jensen, Anders & Aven, Terje, 2018. "A new definition of complexity in a risk analysis setting," Reliability Engineering and System Safety, Elsevier, vol. 171(C), pages 169-173.
    23. Réka Albert & Hawoong Jeong & Albert-László Barabási, 2000. "Error and attack tolerance of complex networks," Nature, Nature, vol. 406(6794), pages 378-382, July.
    24. Feng, Jian Rui & Zhao, Mengke & Yu, Guanghui & Zhang, Jiaqing & Lu, Shouxiang, 2023. "Dynamic risk analysis of accidents chain and system protection strategy based on complex network and node structure importance," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    25. Wang, Zhuoyang & Hill, David J. & Chen, Guo & Dong, Zhao Yang, 2017. "Power system cascading risk assessment based on complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 532-543.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. F. Brocal & C. González & D. Komljenovic & P. F. Katina & Miguel A. Sebastián, 2019. "Emerging Risk Management in Industry 4.0: An Approach to Improve Organizational and Human Performance in the Complex Systems," Complexity, Hindawi, vol. 2019, pages 1-13, June.
    2. Wei, Na & Xie, Wen-Jie & Zhou, Wei-Xing, 2022. "Robustness of the international oil trade network under targeted attacks to economies," Energy, Elsevier, vol. 251(C).
    3. Huang, Wencheng & Li, Haoran & Yin, Yanhui & Zhang, Zhi & Xie, Anhao & Zhang, Yin & Cheng, Guo, 2024. "Node importance identification of unweighted urban rail transit network: An Adjacency Information Entropy based approach," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    4. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & He, Zhichao, 2024. "A network-based approach to improving robustness of a high-speed train by structure adjustment," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    5. Chen, Zhichao & Zheng, Changjiang & Tao, Tongtong & Wang, Yanyan, 2024. "Reliability analysis of urban road traffic network under targeted attack strategies considering traffic congestion diffusion," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    6. Wang, Longjian & Zhang, Shuichao & Szűcs, Gábor & Wang, Yonggang, 2024. "Identifying the critical nodes in multi-modal transportation network with a traffic demand-based computational method," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    7. Wu, Tao & Xian, Xingping & Zhong, Linfeng & Xiong, Xi & Stanley, H. Eugene, 2018. "Power iteration ranking via hybrid diffusion for vital nodes identification," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 802-815.
    8. Zhe Li & Xinyu Huang, 2023. "Identifying Influential Spreaders Using Local Information," Mathematics, MDPI, vol. 11(6), pages 1-14, March.
    9. Fang, Yi-Ping & Sansavini, Giovanni, 2019. "Optimum post-disruption restoration under uncertainty for enhancing critical infrastructure resilience," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 1-11.
    10. Jamalzadeh, Saeed & Mettenbrink, Lily & Barker, Kash & González, Andrés D. & Radhakrishnan, Sridhar & Johansson, Jonas & Bessarabova, Elena, 2024. "Weaponized disinformation spread and its impact on multi-commodity critical infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    11. Wang, Zhixiao & Zhao, Ya & Xi, Jingke & Du, Changjiang, 2016. "Fast ranking influential nodes in complex networks using a k-shell iteration factor," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 461(C), pages 171-181.
    12. Glorian Sorensen & Susan Peters & Karina Nielsen & Eve Nagler & Melissa Karapanos & Lorraine Wallace & Lisa Burke & Jack T. Dennerlein & Gregory R. Wagner, 2019. "Improving Working Conditions to Promote Worker Safety, Health, and Wellbeing for Low-Wage Workers: The Workplace Organizational Health Study," IJERPH, MDPI, vol. 16(8), pages 1-16, April.
    13. Wang, Shuliang & Lv, Wenzhuo & Zhang, Jianhua & Luan, Shengyang & Chen, Chen & Gu, Xifeng, 2021. "Method of power network critical nodes identification and robustness enhancement based on a cooperative framework," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    14. Filiposka, Sonja & Juiz, Carlos, 2015. "Community-based complex cloud data center," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 419(C), pages 356-372.
    15. Jiang, Zhong-Yuan & Zeng, Yong & Liu, Zhi-Hong & Ma, Jian-Feng, 2019. "Identifying critical nodes’ group in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 121-132.
    16. Wang, Weiping & Yang, Saini & Hu, Fuyu & Stanley, H. Eugene & He, Shuai & Shi, Mimi, 2018. "An approach for cascading effects within critical infrastructure systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 164-177.
    17. Bae, Joonhyun & Kim, Sangwook, 2014. "Identifying and ranking influential spreaders in complex networks by neighborhood coreness," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 395(C), pages 549-559.
    18. Hou, Bonan & Yao, Yiping & Liao, Dongsheng, 2012. "Identifying all-around nodes for spreading dynamics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 4012-4017.
    19. Kashin Sugishita & Yasuo Asakura, 2021. "Vulnerability studies in the fields of transportation and complex networks: a citation network analysis," Public Transport, Springer, vol. 13(1), pages 1-34, March.
    20. Feng, Xinhang & Jiang, Yanli & Gai, Wenmei, 2024. "Rural community response to accidental toxic gas release: An individual emergency response model during self-organized evacuations," Reliability Engineering and System Safety, Elsevier, vol. 248(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:244:y:2024:i:c:s0951832024000152. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.