IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v253y2025ics0951832024006471.html
   My bibliography  Save this article

Emergency evacuation risk assessment for toxic gas attacks in airport terminals: Model, algorithm, and application

Author

Listed:
  • Luan, Tianyi
  • Gai, Wenmei
  • Sun, Diange
  • Dong, Hao

Abstract

Transportation infrastructure has often been the target of terrorist attacks, and mitigation of the risk of toxic gas attacks is a challenging task in the design of indoor emergency evacuation systems. Considering multiple emergency response modes, we propose an agent-based risk assessment model and its algorithm to integrate gas diffusion and pedestrian movement data for emergency response, quickly assessing average individual exposure risk. We assessed the exposure status of individuals with respect to their emergency response actions following a toxic gas attack in an airport terminal. The results indicate that in the event of a general gas attack on an airport terminal, ventilation must be immediately ceased along with early evacuation. In areas with a shelter-in-place environment, the ventilation mode and shelter-in-place time should be determined based on the concentration of indoor and outdoor gases. In areas with nerve gas exposure and high population density, a new exit must be established at evacuation bottlenecks, and pedestrians must be guided to evacuate while promptly closing ventilation. These results offer suggestions and strategies for emergency response and decision-making in airport terminals during such incidents.

Suggested Citation

  • Luan, Tianyi & Gai, Wenmei & Sun, Diange & Dong, Hao, 2025. "Emergency evacuation risk assessment for toxic gas attacks in airport terminals: Model, algorithm, and application," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006471
    DOI: 10.1016/j.ress.2024.110576
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024006471
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110576?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.