IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v253y2025ics095183202400646x.html
   My bibliography  Save this article

Uncertainty-based multi-objective optimization in twin tunnel design considering fluid-solid coupling

Author

Listed:
  • Qu, Pengfei
  • Zhang, Limao

Abstract

This paper presents a multi-objective optimization framework based on uncertainty analysis, focusing on fluid–structure interaction in twin tunnel design. High-quality datasets are generated using three-dimensional fluid–structure interaction theory. Long Short-Term Memory-Attention (LSTM-Attention) models are used to simulate internal forces within the tunnel and ground settlement, improving prediction accuracy. The Snow Ablation Optimizer (SAO) adjusts the hyperparameters of the LSTM-Attention model. The SHapley Additive exPlanations (SHAP) framework is introduced to enhance the model’s transparency and interpretability, aiding in understanding the model’s decision-making process. The hybrid Non-dominated Sorting Genetic Algorithm II (NSGA-II) combined with Particle Swarm Optimization (PSO) is employed for multi-objective optimization. Monte Carlo simulation is used to estimate probability constraints, ensuring that the optimization process yields stable and reliable solutions. A case study analyzes the optimization results under different tunnel radii and uncertainty conditions in detail, validating the method’s effectiveness. The study shows that considering uncertainty significantly enhances the accuracy and stability of the optimization results for internal forces and ground settlement. Additionally, under different tunnel radii and uncertainty conditions, the distribution of optimal solutions is more concentrated. This method provides a novel solution for multi-objective optimization in complex engineering problems and offers theoretical and practical guidance for engineering decision-making and optimization.

Suggested Citation

  • Qu, Pengfei & Zhang, Limao, 2025. "Uncertainty-based multi-objective optimization in twin tunnel design considering fluid-solid coupling," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:reensy:v:253:y:2025:i:c:s095183202400646x
    DOI: 10.1016/j.ress.2024.110575
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202400646X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110575?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:253:y:2025:i:c:s095183202400646x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.