IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v253y2025ics0951832024006409.html
   My bibliography  Save this article

Fault Impulse Inference and Cyclostationary Approximation: A feature-interpretable intelligent fault detection method for few-shot unsupervised domain adaptation

Author

Listed:
  • Zhang, Qing
  • Li, Shaochen
  • Chin-Hon, Tan
  • Liu, Xiaofei
  • Shen, Jingyuan
  • Shi, Tielin
  • Xuan, Jianping

Abstract

With the advancement of intelligent detection for rotating machinery, numerous domain adaptation methods have been devised to transfer detection knowledge from one source domain working condition to another target domain working condition, involving extensive transfer scenarios including labeled, few-shot labeled, and unlabeled target conditions. Yet, learning from sparsely labeled signals in the source domain working condition and transferring to unlabeled target conditions, termed few-shot unsupervised domain adaptation (FUDA), is closer to reality but almost unexplored. Diverging from the intuition of combining existing transfer and few-shot learning technologies, this paper pioneers a novel single learning principle focusing on the cyclostationary mechanism (CT) of fault signals. In its implementation, named cyclically enhanced cyclostationary variational autoencoder (CCTVAE), the CT principle motivates the encoder to infer domain-shared representations with fault impulses, and the decoder approximates the cyclostationary structure containing the clear fault and working condition information. Then, auxiliary samples for few-shot expansion are generated by adjusting cyclic parameters of the posterior distribution of representations. Experimentally, CCTVAE achieves commendable results on simulated and real fault datasets. Even for compound faults, domain-shared representations and generated auxiliary signals manifest interpretable fault-indicating spectral lines in the frequency domain, underscoring method reliability.

Suggested Citation

  • Zhang, Qing & Li, Shaochen & Chin-Hon, Tan & Liu, Xiaofei & Shen, Jingyuan & Shi, Tielin & Xuan, Jianping, 2025. "Fault Impulse Inference and Cyclostationary Approximation: A feature-interpretable intelligent fault detection method for few-shot unsupervised domain adaptation," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006409
    DOI: 10.1016/j.ress.2024.110568
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024006409
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110568?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cao, Yudong & Zhuang, Jichao & Miao, Qiuhua & Jia, Minping & Feng, Ke & Zhao, Xiaoli & Yan, Xiaoan & Ding, Peng, 2024. "Source-free domain adaptation for transferable remaining useful life prediction of machine considering source data absence," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    2. Liang, Pengfei & Tian, Jiaye & Wang, Suiyan & Yuan, Xiaoming, 2024. "Multi-source information joint transfer diagnosis for rolling bearing with unknown faults via wavelet transform and an improved domain adaptation network," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    3. Huang, Xucong & Peng, Zhaoqin & Tang, Diyin & Chen, Juan & Zio, Enrico & Zheng, Zaiping, 2024. "A physics-informed autoencoder for system health state assessment based on energy-oriented system performance," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    4. He, Yuxuan & Su, Huai & Zio, Enrico & Peng, Shiliang & Fan, Lin & Yang, Zhaoming & Yang, Zhe & Zhang, Jinjun, 2023. "A systematic method of remaining useful life estimation based on physics-informed graph neural networks with multisensor data," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Li, Xin & Zhong, Xiang & Shao, Haidong & Han, Te & Shen, Changqing, 2021. "Multi-sensor gearbox fault diagnosis by using feature-fusion covariance matrix and multi-Riemannian kernel ridge regression," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Wang, Jun & Ren, He & Shen, Changqing & Huang, Weiguo & Zhu, Zhongkui, 2024. "Multi-scale style generative and adversarial contrastive networks for single domain generalization fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    7. Kim, Yong Chae & Lee, Jinwook & Kim, Taehun & Baek, Jonghwa & Ko, Jin Uk & Jung, Joon Ha & Youn, Byeng D., 2024. "Gradient Alignment based Partial Domain Adaptation (GAPDA) using a domain knowledge filter for fault diagnosis of bearing," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    8. Yan, Shen & Zhong, Xiang & Shao, Haidong & Ming, Yuhang & Liu, Chao & Liu, Bin, 2023. "Digital twin-assisted imbalanced fault diagnosis framework using subdomain adaptive mechanism and margin-aware regularization," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    9. Song, Dengwei & Cheng, Yujie & Zhou, An & Lu, Chen & Chong, Jin & Ma, Jian, 2024. "Remaining useful life prediction and cycle life test optimization for multiple-formula battery: A method based on multi-source transfer learning," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    10. Liu, Jianing & Cao, Hongrui & Luo, Yang, 2023. "An information-induced fault diagnosis framework generalizing from stationary to unknown nonstationary working conditions," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    11. Liu, Yi & Xiang, Hang & Jiang, Zhansi & Xiang, Jiawei, 2023. "Second-order transient-extracting S transform for fault feature extraction in rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    12. Xu, Yanwen & Kohtz, Sara & Boakye, Jessica & Gardoni, Paolo & Wang, Pingfeng, 2023. "Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    13. Zhang, Qing & Tang, Lv & Xuan, Jianping & Shi, Tielin & Li, Rui, 2023. "An uncertainty relevance metric-based domain adaptation fault diagnosis method to overcome class relevance caused confusion," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    14. Liu, Shaowei & Jiang, Hongkai & Wu, Zhenghong & Yi, Zichun & Wang, Ruixin, 2023. "Intelligent fault diagnosis of rotating machinery using a multi-source domain adaptation network with adversarial discrepancy matching," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    15. Li, Jinghui & Mosleh, Ali & Kang, Rui, 2011. "Likelihood ratio gradient estimation for dynamic reliability applications," Reliability Engineering and System Safety, Elsevier, vol. 96(12), pages 1667-1679.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azari, Mehdi Saman & Santini, Stefania & Edrisi, Farid & Flammini, Francesco, 2025. "Self-adaptive fault diagnosis for unseen working conditions based on digital twins and domain generalization," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    2. Li, Zhenning & Jiang, Hongkai & Wang, Xin, 2025. "A novel reinforcement learning agent for rotating machinery fault diagnosis with data augmentation," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    3. Zhang, Zhongwei & Jiao, Zonghao & Li, Youjia & Shao, Mingyu & Dai, Xiangjun, 2024. "Intelligent fault diagnosis of bearings driven by double-level data fusion based on multichannel sample fusion and feature fusion under time-varying speed conditions," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    4. Mei, Fabin & Chen, Hao & Yang, Wenying & Zhai, Guofu, 2024. "A hybrid physics-informed machine learning approach for time-dependent reliability assessment of electromagnetic relays," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    5. Xiao, Xiaoqi & Zhang, Jianguo & Xu, Dan, 2025. "Contrastive domain-invariant generalization for remaining useful life prediction under diverse conditions and fault modes," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    6. Han, Yan & Hu, Ailin & Huang, Qingqing & Zhang, Yan & Lin, Zhichao & Ma, Jinghua, 2025. "Sinkhorn divergence-based contrast domain adaptation for remaining useful life prediction of rolling bearings under multiple operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    7. Song, Chaolin & Xiao, Rucheng & Zhang, Chi & Zhao, Xinwei & Sun, Bo, 2024. "Simulation-free reliability analysis with importance sampling-based adaptive training physics-informed neural networks: Method and application to chloride penetration," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    8. Ma, Hongbo & Wei, Jiacheng & Zhang, Guowei & Kong, Xianguang & Du, Jingli, 2024. "Causality-inspired multi-source domain generalization method for intelligent fault diagnosis under unknown operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    9. Liu, Mengyu & Cheng, Zhe & Yang, Yu & Hu, Niaoqing & Yang, Yi, 2024. "Multi-target domain adaptation intelligent diagnosis method for rotating machinery based on multi-source attention mechanism and mixup feature augmentation," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    10. Dong, Yutong & Jiang, Hongkai & Yao, Renhe & Mu, Mingzhe & Yang, Qiao, 2024. "Rolling bearing intelligent fault diagnosis towards variable speed and imbalanced samples using multiscale dynamic supervised contrast learning," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    11. Abaei, Mohammad Mahdi & Leira, Bernt Johan & Sævik, Svein & BahooToroody, Ahmad, 2024. "Integrating physics-based simulations with gaussian processes for enhanced safety assessment of offshore installations," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    12. Park, Hyung Jun & Kim, Nam H. & Choi, Joo-Ho, 2024. "A robust health prediction using Bayesian approach guided by physical constraints," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    13. Phan, Hieu Chi & Dhar, Ashutosh Sutra & Bui, Nang Duc, 2023. "Reliability assessment of pipelines crossing strike-slip faults considering modeling uncertainties using ANN models," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    14. Yue, Ke & Li, Jipu & Deng, Shuhan & Kwoh, Chee Keong & Chen, Zhuyun & Li, Weihua, 2024. "A relationship-aware calibrated prototypical network for fault incremental diagnosis of electric motors without reserved samples," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    15. He, Yu & Ma, Yafei & Huang, Ke & Wang, Lei & Zhang, Jianren, 2024. "Digital twin Bayesian entropy framework for corrosion fatigue life prediction and calibration of bridge suspender," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    16. Zhou, Haoxuan & Wang, Bingsen & Zio, Enrico & Wen, Guangrui & Liu, Zimin & Su, Yu & Chen, Xuefeng, 2023. "Hybrid system response model for condition monitoring of bearings under time-varying operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    17. Tan, Hongchuang & Xie, Suchao & Ma, Wen & Yang, Chengxing & Zheng, Shiwei, 2023. "Correlation feature distribution matching for fault diagnosis of machines," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    18. Shi, Yaowei & Deng, Aidong & Deng, Minqiang & Xu, Meng & Liu, Yang & Ding, Xue & Li, Jing, 2022. "Transferable adaptive channel attention module for unsupervised cross-domain fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    19. Dong, Yutong & Jiang, Hongkai & Wu, Zhenghong & Yang, Qiao & Liu, Yunpeng, 2023. "Digital twin-assisted multiscale residual-self-attention feature fusion network for hypersonic flight vehicle fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    20. Chen, Edward & Bao, Han & Dinh, Nam, 2024. "Evaluating the reliability of machine-learning-based predictions used in nuclear power plant instrumentation and control systems," Reliability Engineering and System Safety, Elsevier, vol. 250(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.