IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v96y2011i12p1667-1679.html
   My bibliography  Save this article

Likelihood ratio gradient estimation for dynamic reliability applications

Author

Listed:
  • Li, Jinghui
  • Mosleh, Ali
  • Kang, Rui

Abstract

This paper investigates the issue of performing a first-order sensitivity analysis in the setting of dynamic reliability. The likelihood ratio (LR) derivative/gradient estimation method is chosen to fulfill the mission. Its formulation and implementation in the system-based Monte Carlo approach that is commonly used in dynamic reliability applications is first given. To speed up the simulation, we then apply the LR method within the framework of Z-VISA, a biasing (or importance sampling) method we have developed recently. A widely discussed dynamic reliability example (a holdup tank) is studied to test the effectiveness and behaviors of the LR method when applied to dynamic reliability problems and also the effectiveness of the Z-VISA biasing technique for reducing the variance of LR derivative estimators.

Suggested Citation

  • Li, Jinghui & Mosleh, Ali & Kang, Rui, 2011. "Likelihood ratio gradient estimation for dynamic reliability applications," Reliability Engineering and System Safety, Elsevier, vol. 96(12), pages 1667-1679.
  • Handle: RePEc:eee:reensy:v:96:y:2011:i:12:p:1667-1679
    DOI: 10.1016/j.ress.2011.08.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832011001542
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2011.08.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reuven Y. Rubinstein, 1989. "Sensitivity Analysis and Performance Extrapolation for Computer Simulation Models," Operations Research, INFORMS, vol. 37(1), pages 72-81, February.
    2. Rubinstein, Reuven Y., 1986. "The score function approach for sensitivity analysis of computer simulation models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 28(5), pages 351-379.
    3. Marvin K. Nakayama, 1995. "Asymptotics of Likelihood Ratio Derivative Estimators in Simulations of Highly Reliable Markovian Systems," Management Science, INFORMS, vol. 41(3), pages 524-554, March.
    4. Pierre L'Ecuyer, 1995. "Note: On the Interchange of Derivative and Expectation for Likelihood Ratio Derivative Estimators," Management Science, INFORMS, vol. 41(4), pages 738-747, April.
    5. Pierre L'Ecuyer, 1990. "A Unified View of the IPA, SF, and LR Gradient Estimation Techniques," Management Science, INFORMS, vol. 36(11), pages 1364-1383, November.
    6. Martin I. Reiman & Alan Weiss, 1989. "Sensitivity Analysis for Simulations via Likelihood Ratios," Operations Research, INFORMS, vol. 37(5), pages 830-844, October.
    7. H Zhang & F Dufour & Y Dutuit & K Gonzalez, 2008. "Piecewise deterministic Markov processes and dynamic reliability," Journal of Risk and Reliability, , vol. 222(4), pages 545-551, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Isadora Antoniano‐Villalobos & Emanuele Borgonovo & Sumeda Siriwardena, 2018. "Which Parameters Are Important? Differential Importance Under Uncertainty," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2459-2477, November.
    2. Xing Pan & Lunhu Hu & Ziling Xin & Shenghan Zhou & Yanmei Lin & Yong Wu, 2018. "Risk Scenario Generation Based on Importance Measure Analysis," Sustainability, MDPI, vol. 10(9), pages 1-18, September.
    3. Raoni, Rafael & Secchi, Argimiro R., 2019. "Procedures to model and solve probabilistic dynamic system problems," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    4. Turati, Pietro & Pedroni, Nicola & Zio, Enrico, 2016. "Advanced RESTART method for the estimation of the probability of failure of highly reliable hybrid dynamic systems," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 117-126.
    5. Maidana, Renan G. & Parhizkar, Tarannom & Gomola, Alojz & Utne, Ingrid B. & Mosleh, Ali, 2023. "Supervised dynamic probabilistic risk assessment: Review and comparison of methods," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    6. de Saporta, Benoîte & Zhang, Huilong, 2013. "Predictive maintenance for the heated hold-up tank," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 82-90.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marvin K. Nakayama & Perwez Shahabuddin, 1998. "Likelihood Ratio Derivative Estimation for Finite-Time Performance Measures in Generalized Semi-Markov Processes," Management Science, INFORMS, vol. 44(10), pages 1426-1441, October.
    2. Gilles Pages & Olivier Pironneau & Guillaume Sall, 2015. "Vibrato and Automatic Differentiation for High Order Derivatives and Sensitivities of Financial Options," Working Papers hal-01234637, HAL.
    3. Soumyadip Ghosh & Henry Lam, 2019. "Robust Analysis in Stochastic Simulation: Computation and Performance Guarantees," Operations Research, INFORMS, vol. 67(1), pages 232-249, January.
    4. Laub, Patrick J. & Salomone, Robert & Botev, Zdravko I., 2019. "Monte Carlo estimation of the density of the sum of dependent random variables," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 161(C), pages 23-31.
    5. Yongqiang Wang & Michael C. Fu & Steven I. Marcus, 2012. "A New Stochastic Derivative Estimator for Discontinuous Payoff Functions with Application to Financial Derivatives," Operations Research, INFORMS, vol. 60(2), pages 447-460, April.
    6. Jingxu Xu & Zeyu Zheng, 2023. "Gradient-Based Simulation Optimization Algorithms via Multi-Resolution System Approximations," INFORMS Journal on Computing, INFORMS, vol. 35(3), pages 633-651, May.
    7. Gilles Pag`es & Olivier Pironneau & Guillaume Sall, 2016. "Vibrato and automatic differentiation for high order derivatives and sensitivities of financial options," Papers 1606.06143, arXiv.org.
    8. Sridhar Bashyam & Michael C. Fu, 1994. "Application of perturbation analysis to a class of periodic review (s, S) inventory systems," Naval Research Logistics (NRL), John Wiley & Sons, vol. 41(1), pages 47-80, February.
    9. Schweinberger, Michael & Snijders, Tom A.B., 2007. "Markov models for digraph panel data: Monte Carlo-based derivative estimation," Computational Statistics & Data Analysis, Elsevier, vol. 51(9), pages 4465-4483, May.
    10. Yijie Peng & Li Xiao & Bernd Heidergott & L. Jeff Hong & Henry Lam, 2022. "A New Likelihood Ratio Method for Training Artificial Neural Networks," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 638-655, January.
    11. Calvin, James M. & Nakayama, Marvin K., 2004. "Permuted derivative and importance-sampling estimators for regenerative simulations," European Journal of Operational Research, Elsevier, vol. 156(2), pages 390-414, July.
    12. Rubinstein, Reuven Y., 1991. "Modified importance sampling for performance evaluation and sensitivity analysis of computer simulation models," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 33(1), pages 1-22.
    13. Babykina, Génia & Brînzei, Nicolae & Aubry, Jean-François & Deleuze, Gilles, 2016. "Modeling and simulation of a controlled steam generator in the context of dynamic reliability using a Stochastic Hybrid Automaton," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 115-136.
    14. Marrel, Amandine & Chabridon, Vincent, 2021. "Statistical developments for target and conditional sensitivity analysis: Application on safety studies for nuclear reactor," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    15. Michael C. Fu, 2008. "What you should know about simulation and derivatives," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(8), pages 723-736, December.
    16. Kleijnen, Jack P. C. & Rubinstein, Reuven Y., 1996. "Optimization and sensitivity analysis of computer simulation models by the score function method," European Journal of Operational Research, Elsevier, vol. 88(3), pages 413-427, February.
    17. de Saporta, Benoîte & Zhang, Huilong, 2013. "Predictive maintenance for the heated hold-up tank," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 82-90.
    18. Sarazin, Gabriel & Morio, Jérôme & Lagnoux, Agnès & Balesdent, Mathieu & Brevault, Loïc, 2021. "Reliability-oriented sensitivity analysis in presence of data-driven epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    19. Akiyama, Naho & Yamada, Toshihiro, 2024. "A weak approximation for Bismut’s formula: An algorithmic differentiation method," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 216(C), pages 386-396.
    20. Brissaud, Florent & Smidts, Carol & Barros, Anne & Bérenguer, Christophe, 2011. "Dynamic reliability of digital-based transmitters," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 793-813.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:96:y:2011:i:12:p:1667-1679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.