An information-induced fault diagnosis framework generalizing from stationary to unknown nonstationary working conditions
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2023.109380
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Shi, Yaowei & Deng, Aidong & Deng, Minqiang & Xu, Meng & Liu, Yang & Ding, Xue & Bian, Wenbin, 2023. "Domain augmentation generalization network for real-time fault diagnosis under unseen working conditions," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
- Li, Qi & Chen, Liang & Kong, Lin & Wang, Dong & Xia, Min & Shen, Changqing, 2023. "Cross-domain augmentation diagnosis: An adversarial domain-augmented generalization method for fault diagnosis under unseen working conditions," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Zhao, Chao & Shen, Weiming, 2022. "Adaptive open set domain generalization network: Learning to diagnose unknown faults under unknown working conditions," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
- Zuo, Lin & Xu, Fengjie & Zhang, Changhua & Xiahou, Tangfan & Liu, Yu, 2022. "A multi-layer spiking neural network-based approach to bearing fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
- Ding, Yifei & Jia, Minping & Zhuang, Jichao & Cao, Yudong & Zhao, Xiaoli & Lee, Chi-Guhn, 2023. "Deep imbalanced domain adaptation for transfer learning fault diagnosis of bearings under multiple working conditions," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Liu, Zhao-Hua & Chen, Liang & Wei, Hua-Liang & Wu, Fa-Ming & Chen, Lei & Chen, Ya-Nan, 2023. "A Tensor-based domain alignment method for intelligent fault diagnosis of rolling bearing in rotating machinery," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Yu, Xiaolei & Zhao, Zhibin & Zhang, Xingwu & Chen, Xuefeng & Cai, Jianbing, 2023. "Statistical identification guided open-set domain adaptation in fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
- Fan, Yuantao & Nowaczyk, Sławomir & Rögnvaldsson, Thorsteinn, 2020. "Transfer learning for remaining useful life prediction based on consensus self-organizing models," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
- Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dong, Yutong & Jiang, Hongkai & Yao, Renhe & Mu, Mingzhe & Yang, Qiao, 2024. "Rolling bearing intelligent fault diagnosis towards variable speed and imbalanced samples using multiscale dynamic supervised contrast learning," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liu, Shaowei & Jiang, Hongkai & Wu, Zhenghong & Yi, Zichun & Wang, Ruixin, 2023. "Intelligent fault diagnosis of rotating machinery using a multi-source domain adaptation network with adversarial discrepancy matching," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
- Wang, Jun & Ren, He & Shen, Changqing & Huang, Weiguo & Zhu, Zhongkui, 2024. "Multi-scale style generative and adversarial contrastive networks for single domain generalization fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
- Liu, Jiale & Wang, Huan, 2024. "A brain-inspired energy-efficient Wide Spiking Residual Attention Framework for intelligent fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
- Fallahdizcheh, Amirhossein & Wang, Chao, 2022. "Transfer learning of degradation modeling and prognosis based on multivariate functional analysis with heterogeneous sampling rates," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
- Xia, Pengcheng & Huang, Yixiang & Tao, Zhiyu & Liu, Chengliang & Liu, Jie, 2023. "A digital twin-enhanced semi-supervised framework for motor fault diagnosis based on phase-contrastive current dot pattern," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
- Zhao, Zeyun & Wang, Jia & Tao, Qian & Li, Andong & Chen, Yiyang, 2024. "An unknown wafer surface defect detection approach based on Incremental Learning for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
- Tian, Jilun & Zhang, Jiusi & Jiang, Yuchen & Wu, Shimeng & Luo, Hao & Yin, Shen, 2024. "A novel generalized source-free domain adaptation approach for cross-domain industrial fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
- Zhang, Liangwei & Lin, Jing & Shao, Haidong & Zhang, Zhicong & Yan, Xiaohui & Long, Jianyu, 2021. "End-to-end unsupervised fault detection using a flow-based model," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
- Ma, Yulin & Yang, Jun & Li, Lei, 2023. "Gradient aligned domain generalization with a mutual teaching teacher-student network for intelligent fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
- Zhang, Xingwu & Zhao, Yu & Yu, Xiaolei & Ma, Rui & Wang, Chenxi & Chen, Xuefeng, 2023. "Weighted domain separation based open set fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
- Yu, Xiaolei & Zhao, Zhibin & Zhang, Xingwu & Chen, Xuefeng & Cai, Jianbing, 2023. "Statistical identification guided open-set domain adaptation in fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
- Pan, Yongjun & Sun, Yu & Li, Zhixiong & Gardoni, Paolo, 2023. "Machine learning approaches to estimate suspension parameters for performance degradation assessment using accurate dynamic simulations," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Li, Yuanfu & Chen, Yao & Hu, Zhenchao & Zhang, Huisheng, 2023. "Remaining useful life prediction of aero-engine enabled by fusing knowledge and deep learning models," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
- Phan, Hieu Chi & Dhar, Ashutosh Sutra & Bui, Nang Duc, 2023. "Reliability assessment of pipelines crossing strike-slip faults considering modeling uncertainties using ANN models," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
- Liu, Lu & Song, Xiao & Zhou, Zhetao, 2022. "Aircraft engine remaining useful life estimation via a double attention-based data-driven architecture," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
- Tan, Hongchuang & Xie, Suchao & Ma, Wen & Yang, Chengxing & Zheng, Shiwei, 2023. "Correlation feature distribution matching for fault diagnosis of machines," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
- Yuan, Zixia & Xiong, Guojiang & Fu, Xiaofan & Mohamed, Ali Wagdy, 2023. "Improving fault tolerance in diagnosing power system failures with optimal hierarchical extreme learning machine," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
- Zhuang, Jichao & Jia, Minping & Ding, Yifei & Ding, Peng, 2021. "Temporal convolution-based transferable cross-domain adaptation approach for remaining useful life estimation under variable failure behaviors," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- Costa, Nahuel & Sánchez, Luciano, 2022. "Variational encoding approach for interpretable assessment of remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
- Wang, Weicheng & Chen, Jinglong & Zhang, Tianci & Liu, Zijun & Wang, Jun & Zhang, Xinwei & He, Shuilong, 2023. "An asymmetrical graph Siamese network for one-classanomaly detection of engine equipment with multi-source fusion," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
More about this item
Keywords
Cross-domain fault diagnosis; Nonstationary working conditions; Information-induced feature learning; Domain generalization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:237:y:2023:i:c:s0951832023002946. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.