IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v250y2024ics0951832024003703.html
   My bibliography  Save this article

Multi-target domain adaptation intelligent diagnosis method for rotating machinery based on multi-source attention mechanism and mixup feature augmentation

Author

Listed:
  • Liu, Mengyu
  • Cheng, Zhe
  • Yang, Yu
  • Hu, Niaoqing
  • Yang, Yi

Abstract

Intelligent diagnostic methods for identifying faults in rotating machinery, based on domain adaptation, have garnered significant attention. However, most current domain adaptation approaches are primarily designed for single-source domain and single-target domain (SSST) applications. There is a dearth of domain adaptation approaches tailored for single-source to multi-target domains (SSMT). In contrast to SSST, SSMT takes a more comprehensive approach by considering relationships across multiple target domains. This approach offers increased versatility and a broader range of potential applications. To address this, an end-to-end multi-target adversarial subdomain adaptation method is proposed that leverages attention mechanism data fusion and mixup feature augmentation. Firstly, the attention mechanism is used to fuse data from different sensors in both channel and spatial dimensions. Subsequently, a mixup-based feature augmentation method is proposed for multi-target domain adaptation. The method is combined with subdomain adaptation and domain discrimination to further reduce the distributional differences between the source and various target domains while relieving the overfitting problem during domain adaptation. Finally, with the above approach, a robust and stable model for multiple target domain fault diagnosis can be trained. Our experimental results illustrate that our approach has higher accuracy and robustness compared to several popular domain adaptation methods.

Suggested Citation

  • Liu, Mengyu & Cheng, Zhe & Yang, Yu & Hu, Niaoqing & Yang, Yi, 2024. "Multi-target domain adaptation intelligent diagnosis method for rotating machinery based on multi-source attention mechanism and mixup feature augmentation," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
  • Handle: RePEc:eee:reensy:v:250:y:2024:i:c:s0951832024003703
    DOI: 10.1016/j.ress.2024.110298
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024003703
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110298?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tian, Jilun & Zhang, Jiusi & Jiang, Yuchen & Wu, Shimeng & Luo, Hao & Yin, Shen, 2024. "A novel generalized source-free domain adaptation approach for cross-domain industrial fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Liang, Pengfei & Tian, Jiaye & Wang, Suiyan & Yuan, Xiaoming, 2024. "Multi-source information joint transfer diagnosis for rolling bearing with unknown faults via wavelet transform and an improved domain adaptation network," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    3. Zheng, Xiaorong & Nie, Jiahao & He, Zhiwei & Li, Ping & Dong, Zhekang & Gao, Mingyu, 2024. "A fine-grained feature decoupling based multi-source domain adaptation network for rotating machinery fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    4. Li, Naipeng & Gebraeel, Nagi & Lei, Yaguo & Fang, Xiaolei & Cai, Xiao & Yan, Tao, 2021. "Remaining useful life prediction based on a multi-sensor data fusion model," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    5. Li, Qikang & Tang, Baoping & Deng, Lei & Zhu, Peng, 2023. "Source-free domain adaptation framework for fault diagnosis of rotation machinery under data privacy," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    6. Zhang, Qing & Tang, Lv & Xuan, Jianping & Shi, Tielin & Li, Rui, 2023. "An uncertainty relevance metric-based domain adaptation fault diagnosis method to overcome class relevance caused confusion," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Qikang & Tang, Baoping & Deng, Lei & Yang, Qichao & Zhu, Peng, 2024. "Adaptive centroid prototype-based domain adaptation for fault diagnosis of rotating machinery without source data," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    2. Zhou, Tao & Yao, Dechen & Yang, Jianwei & Meng, Chang & Li, Ankang & Li, Xi, 2024. "DRSwin-ST: An intelligent fault diagnosis framework based on dynamic threshold noise reduction and sparse transformer with Shifted Windows," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    3. Ta, Yuntian & Li, Yanfeng & Cai, Wenan & Zhang, Qianqian & Wang, Zhijian & Dong, Lei & Du, Wenhua, 2023. "Adaptive staged remaining useful life prediction method based on multi-sensor and multi-feature fusion," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    4. Nguyen, Khanh T.P. & Medjaher, Kamal & Gogu, Christian, 2022. "Probabilistic deep learning methodology for uncertainty quantification of remaining useful lifetime of multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    5. Liu, Lu & Song, Xiao & Zhou, Zhetao, 2022. "Aircraft engine remaining useful life estimation via a double attention-based data-driven architecture," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    6. Pang, Zhenan & Li, Tianmei & Pei, Hong & Si, Xiaosheng, 2023. "A condition-based prognostic approach for age- and state-dependent partially observable nonlinear degrading system," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    7. Yu, Aobo & Cai, Bolin & Wu, Qiujie & García, Miguel Martínez & Li, Jing & Chen, Xiangcheng, 2024. "Source-free domain adaptation method for fault diagnosis of rotation machinery under partial information," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    8. Lyu, Dongzhen & Niu, Guangxing & Liu, Enhui & Zhang, Bin & Chen, Gang & Yang, Tao & Zio, Enrico, 2022. "Time space modelling for fault diagnosis and prognosis with uncertainty management: A general theoretical formulation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    9. Li, Ying & Zhang, Lijie & Liang, Pengfei & Wang, Xiangfeng & Wang, Bin & Xu, Leitao, 2024. "Semi-supervised meta-path space extended graph convolution network for intelligent fault diagnosis of rotating machinery under time-varying speeds," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    10. Fallahdizcheh, Amirhossein & Wang, Chao, 2022. "Transfer learning of degradation modeling and prognosis based on multivariate functional analysis with heterogeneous sampling rates," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    11. Li, Xilin & Teng, Wei & Peng, Dikang & Ma, Tao & Wu, Xin & Liu, Yibing, 2023. "Feature fusion model based health indicator construction and self-constraint state-space estimator for remaining useful life prediction of bearings in wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    12. Zheng, Xiaorong & Nie, Jiahao & He, Zhiwei & Li, Ping & Dong, Zhekang & Gao, Mingyu, 2024. "A fine-grained feature decoupling based multi-source domain adaptation network for rotating machinery fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    13. Hu, Kui & He, Qingbo & Cheng, Changming & Peng, Zhike, 2024. "Adaptive incremental diagnosis model for intelligent fault diagnosis with dynamic weight correction," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    14. Wang, Yuan & Lei, Yaguo & Li, Naipeng & Yan, Tao & Si, Xiaosheng, 2023. "Deep multisource parallel bilinear-fusion network for remaining useful life prediction of machinery," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    15. Kumar, Anil & Parkash, Chander & Vashishtha, Govind & Tang, Hesheng & Kundu, Pradeep & Xiang, Jiawei, 2022. "State-space modeling and novel entropy-based health indicator for dynamic degradation monitoring of rolling element bearing," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    16. Chen, Jiaxian & Li, Dongpeng & Huang, Ruyi & Chen, Zhuyun & Li, Weihua, 2023. "Aero-engine remaining useful life prediction method with self-adaptive multimodal data fusion and cluster-ensemble transfer regression," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    17. Guan, Yang & Meng, Zong & Sun, Dengyun & Liu, Jingbo & Fan, Fengjie, 2021. "2MNet: Multi-sensor and multi-scale model toward accurate fault diagnosis of rolling bearing," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    18. Wang, Changdong & Tian, Bowen & Yang, Jingli & Jie, Huamin & Chang, Yongqi & Zhao, Zhenyu, 2024. "Neural-transformer: A brain-inspired lightweight mechanical fault diagnosis method under noise," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    19. Shi, Yong & Zhang, Linzi, 2023. "Modelling long- and short-term multi-dimensional patterns in predictive maintenance with accumulative attention," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    20. Silvio Simani & Elena Zattoni, 2021. "Advanced Control Design and Fault Diagnosis," Energies, MDPI, vol. 14(18), pages 1-6, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:250:y:2024:i:c:s0951832024003703. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.