IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v253y2025ics0951832024006112.html
   My bibliography  Save this article

Domain correction for hydraulic internal pump leakage detection considering multiclass aberrant flow data

Author

Listed:
  • Chen, Xirui
  • Liu, Hui

Abstract

Harsh working environment not only threatens the health of the hydraulic system but also the condition monitoring system. The latter problem will make data aberrant and disable lots of data-based fault detection methods. Inspired by the Fail-Safe principle, the multiclass aberrant data problem is investigated in this study from the perspective of transfer learning. Firstly, the Domain Correction, a variant of Domain Adaptation, is defined theoretically. Then, an indirect Domain Correction framework is proposed and applied to internal pump leakage detection with aberrant flow data. The Teacher-Student structure is the basis. Extra Correction Module is designed to better correct aberrant representation into normal. Layer-wise training and the Noisy Tune are performed to mitigate overfitting. The Self Correction Attention mechanism is presented to help the model focus on the well-measured parts of samples. The proposed method can improve the model's accuracy on the aberrant dataset from 47.1% to 95.0%, meanwhile, the accuracy on the well-measured dataset is guaranteed at 99.2%.

Suggested Citation

  • Chen, Xirui & Liu, Hui, 2025. "Domain correction for hydraulic internal pump leakage detection considering multiclass aberrant flow data," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006112
    DOI: 10.1016/j.ress.2024.110539
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024006112
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110539?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006112. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.