IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v252y2024ics0951832024005507.html
   My bibliography  Save this article

An asset management modelling framework for wind turbine blades considering monitoring system reliability

Author

Listed:
  • Wu, Wen
  • Prescott, Darren
  • Remenyte-Prescott, Rasa
  • Saleh, Ali
  • Ruano, Manuel Chiachio

Abstract

By incorporating information about asset condition from a monitoring system, engineers can utilize asset management models to manage maintenance activities on wind turbine blades throughout their lifespan. This can lower operating and maintenance costs and increase the life of the blades. The asset management model relies on the monitoring system as a source of information, however, commonly the reliability of the monitoring system is not considered. This paper presents a wind turbine blade asset management Petri net (PN) model that covers the blade asset management process, including degradation, inspection, condition monitoring (CM), and maintenance processes. The paper proposes two contributions. Firstly, while taking into account detailed industry guidelines, the developed model can forecast the future blade condition for a given asset management strategy. Secondly, it investigates the impact of the reliability of the monitoring system on the asset management modelling results. With the aid of the developed model, the number of repair actions and probability distributions of blade condition discovery time are obtained. In addition, the PN gives an indication of how misreporting (underestimation and overestimation) occurs and the extent of the misreporting. The simulation results illustrate the degree of uncertainty introduced into the monitoring results by the reliability of the monitoring system and, consequently, the extent to which this factor influences the maintenance strategies. The proposed model can be used to support asset management decisions when monitoring system performance degrades.

Suggested Citation

  • Wu, Wen & Prescott, Darren & Remenyte-Prescott, Rasa & Saleh, Ali & Ruano, Manuel Chiachio, 2024. "An asset management modelling framework for wind turbine blades considering monitoring system reliability," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
  • Handle: RePEc:eee:reensy:v:252:y:2024:i:c:s0951832024005507
    DOI: 10.1016/j.ress.2024.110478
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024005507
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110478?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brouwer, Sander R. & Al-Jibouri, Saad H.S. & Cárdenas, Ibsen Chivatá & Halman, Johannes I.M., 2018. "Towards analysing risks to public safety from wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 77-87.
    2. Nielsen, Jannie Jessen & Sørensen, John Dalsgaard, 2011. "On risk-based operation and maintenance of offshore wind turbine components," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 218-229.
    3. Saleh, Ali & Chiachío, Manuel & Salas, Juan Fernández & Kolios, Athanasios, 2023. "Self-adaptive optimized maintenance of offshore wind turbines by intelligent Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    4. Mukhopadhyay, Koushiki & Liu, Bin & Bedford, Tim & Finkelstein, Maxim, 2023. "Remaining lifetime of degrading systems continuously monitored by degrading sensors," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    5. Hadri, Omar & Prescott, Darren, 2024. "Modular asset management framework based on Petri-net formalisations and risk-aware maintenance," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    6. Saleh, Ali & Remenyte-Prescott, Rasa & Prescott, Darren & Chiachío, Manuel, 2024. "Intelligent and adaptive asset management model for railway sections using the iPN method," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    7. Yan, Rundong & Dunnett, Sarah & Andrews, John, 2023. "A Petri net model-based resilience analysis of nuclear power plants under the threat of natural hazards," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    8. Chiachío, Manuel & Saleh, Ali & Naybour, Susannah & Chiachío, Juan & Andrews, John, 2022. "Reduction of Petri net maintenance modeling complexity via Approximate Bayesian Computation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    9. Naybour, Matthew & Remenyte-Prescott, Rasa & Boyd, Matthew J., 2019. "Reliability and efficiency evaluation of a community pharmacy dispensing process using a coloured Petri-net approach," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 258-268.
    10. Hameed, Z. & Hong, Y.S. & Cho, Y.M. & Ahn, S.H. & Song, C.K., 2009. "Condition monitoring and fault detection of wind turbines and related algorithms: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 1-39, January.
    11. Wu, Wen & Cantero-Chinchilla, Sergio & Prescott, Darren & Remenyte-Prescott, Rasa & Chiachío, Manuel, 2024. "A general approach to assessing SHM reliability considering sensor failures based on information theory," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    12. Yan, Rundong & Dunnett, Sarah & Jackson, Lisa, 2023. "Impact of condition monitoring on the maintenance and economic viability of offshore wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    13. Liu, Shuanglei & Li, Weijun & Gao, Peng & Sun, Yibo, 2022. "Modeling and performance analysis of gas leakage emergency disposal process in gas transmission station based on Stochastic Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    14. García Márquez, Fausto Pedro & Tobias, Andrew Mark & Pinar Pérez, Jesús María & Papaelias, Mayorkinos, 2012. "Condition monitoring of wind turbines: Techniques and methods," Renewable Energy, Elsevier, vol. 46(C), pages 169-178.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Wen & Cantero-Chinchilla, Sergio & Prescott, Darren & Remenyte-Prescott, Rasa & Chiachío, Manuel, 2024. "A general approach to assessing SHM reliability considering sensor failures based on information theory," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    2. Jin, Xin & Ju, Wenbin & Zhang, Zhaolong & Guo, Lianxin & Yang, Xiangang, 2016. "System safety analysis of large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1293-1307.
    3. Masoud Asgarpour & John Dalsgaard Sørensen, 2018. "Bayesian Based Diagnostic Model for Condition Based Maintenance of Offshore Wind Farms," Energies, MDPI, vol. 11(2), pages 1-17, January.
    4. Igba, Joel & Alemzadeh, Kazem & Durugbo, Christopher & Henningsen, Keld, 2015. "Performance assessment of wind turbine gearboxes using in-service data: Current approaches and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 144-159.
    5. Pliego Marugán, Alberto & Peco Chacón, Ana María & García Márquez, Fausto Pedro, 2019. "Reliability analysis of detecting false alarms that employ neural networks: A real case study on wind turbines," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    6. Beganovic, Nejra & Söffker, Dirk, 2016. "Structural health management utilization for lifetime prognosis and advanced control strategy deployment of wind turbines: An overview and outlook concerning actual methods, tools, and obtained result," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 68-83.
    7. Habibi, Hamed & Howard, Ian & Simani, Silvio, 2019. "Reliability improvement of wind turbine power generation using model-based fault detection and fault tolerant control: A review," Renewable Energy, Elsevier, vol. 135(C), pages 877-896.
    8. Ruiz de la Hermosa González-Carrato, Raúl & García Márquez, Fausto Pedro & Dimlaye, Vichaar, 2015. "Maintenance management of wind turbines structures via MFCs and wavelet transforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 472-482.
    9. Moynihan, Bridget & Moaveni, Babak & Liberatore, Sauro & Hines, Eric, 2022. "Estimation of blade forces in wind turbines using blade root strain measurements with OpenFAST verification," Renewable Energy, Elsevier, vol. 184(C), pages 662-676.
    10. Enevoldsen, Peter, 2016. "Onshore wind energy in Northern European forests: Reviewing the risks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1251-1262.
    11. Tang, Baoping & Song, Tao & Li, Feng & Deng, Lei, 2014. "Fault diagnosis for a wind turbine transmission system based on manifold learning and Shannon wavelet support vector machine," Renewable Energy, Elsevier, vol. 62(C), pages 1-9.
    12. Oh, Ki-Yong & Park, Joon-Young & Lee, Jun-Shin & Lee, JaeKyung, 2015. "Implementation of a torque and a collective pitch controller in a wind turbine simulator to characterize the dynamics at three control regions," Renewable Energy, Elsevier, vol. 79(C), pages 150-160.
    13. Rodríguez-López, Miguel A. & López-González, Luis M. & López-Ochoa, Luis M. & Las-Heras-Casas, Jesús, 2016. "Development of indicators for the detection of equipment malfunctions and degradation estimation based on digital signals (alarms and events) from operation SCADA," Renewable Energy, Elsevier, vol. 99(C), pages 224-236.
    14. Hendradewa, Andrie Pasca & Yin, Shen, 2025. "Comparative analysis of offshore wind turbine blade maintenance: RL-based and classical strategies for sustainable approach," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    15. Jürgen Herp & Niels L. Pedersen & Esmaeil S. Nadimi, 2019. "Assessment of Early Stopping through Statistical Health Prognostic Models for Empirical RUL Estimation in Wind Turbine Main Bearing Failure Monitoring," Energies, MDPI, vol. 13(1), pages 1-18, December.
    16. Faiz, Jawad & Moosavi, S.M.M., 2016. "Eccentricity fault detection – From induction machines to DFIG—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 169-179.
    17. Kong, Yun & Wang, Tianyang & Feng, Zhipeng & Chu, Fulei, 2020. "Discriminative dictionary learning based sparse representation classification for intelligent fault identification of planet bearings in wind turbine," Renewable Energy, Elsevier, vol. 152(C), pages 754-769.
    18. Artigao, Estefania & Martín-Martínez, Sergio & Honrubia-Escribano, Andrés & Gómez-Lázaro, Emilio, 2018. "Wind turbine reliability: A comprehensive review towards effective condition monitoring development," Applied Energy, Elsevier, vol. 228(C), pages 1569-1583.
    19. Kong, Yun & Wang, Tianyang & Chu, Fulei, 2019. "Meshing frequency modulation assisted empirical wavelet transform for fault diagnosis of wind turbine planetary ring gear," Renewable Energy, Elsevier, vol. 132(C), pages 1373-1388.
    20. Pierre Tchakoua & René Wamkeue & Mohand Ouhrouche & Fouad Slaoui-Hasnaoui & Tommy Andy Tameghe & Gabriel Ekemb, 2014. "Wind Turbine Condition Monitoring: State-of-the-Art Review, New Trends, and Future Challenges," Energies, MDPI, vol. 7(4), pages 1-36, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:252:y:2024:i:c:s0951832024005507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.