IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v12y2024i18p2845-d1477401.html
   My bibliography  Save this article

Discrete Random Renewable Replacements after the Expiration of Collaborative Preventive Maintenance Warranty

Author

Listed:
  • Hui Chen

    (School of Management, Foshan University, Foshan 528225, China)

  • Jie Chen

    (School of Management, Foshan University, Foshan 528225, China)

  • Yangyang Lai

    (School of Management, Foshan University, Foshan 528225, China)

  • Xiaoqi Yu

    (School of Management, Foshan University, Foshan 528225, China)

  • Lijun Shang

    (School of Management, Foshan University, Foshan 528225, China)

  • Rui Peng

    (School of Economics and Management, Beijing University of Technology, Beijing 100124, China)

  • Baoliang Liu

    (College of Mathematics and Statistics, Shanxi Datong University, Datong 037009, China)

Abstract

With advanced digital technologies as the key support, many scholars and researchers have proposed various random warranty models by integrating mission cycles into the warranty stage. However, these existing warranty models are designed only from the manufacturer’s subjective perspective, ignoring certain consumer requirements. For instance, they overlook a wide range of warranty coverage, the pursuit of reliability improvement rather than mere minimal repair, and the need to limit the delay in repair. To address these consumer requirements, this paper proposes a novel random collaborative preventive maintenance warranty with repair-time threshold (RCPMW-RTT). This model incorporates terms that are jointly designed by manufacturers and consumers to meet specific consumer needs, thereby overcoming the limitations of existing warranty models. The introduction of a repair-time threshold aims to limit the time delay in repairing failures and to compensate for any losses incurred by consumers. Using probability theory, the RCPMW-RTT is evaluated in terms of cost and time, and relevant variants are derived by analyzing key parameters. As an exemplary representation of the RCPMW-RTT, two random replacement policies named the discrete random renewable back replacement (DRRBR) and the discrete random renewable front replacement (DRRFR) are proposed and modelled to ensure reliability after the expiration of the RCPMW-RTT. In both policies, product replacement is triggered either by the occurrence of the first extreme mission cycle or by reaching the limit on the number of non-extreme mission cycles, whichever comes first. Probability theory is used to present cost rates for both policies in order to determine optimal values for decision variables. Finally, numerical analysis is performed on the RCPMW-RTT to reveal hidden variation tendencies and mechanisms; numerical analysis is also performed on the DRRBR and the DRRFR. The numerical results show that the proposed random replacement policies are feasible and unique; the replacement time within the post-warranty coverage increases as the maintenance quality improves and the cost rate can be reduced by setting a smaller repair-time threshold.

Suggested Citation

  • Hui Chen & Jie Chen & Yangyang Lai & Xiaoqi Yu & Lijun Shang & Rui Peng & Baoliang Liu, 2024. "Discrete Random Renewable Replacements after the Expiration of Collaborative Preventive Maintenance Warranty," Mathematics, MDPI, vol. 12(18), pages 1-21, September.
  • Handle: RePEc:gam:jmathe:v:12:y:2024:i:18:p:2845-:d:1477401
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/12/18/2845/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/12/18/2845/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Toshio Nakagawa, 2014. "Random Maintenance Policies," Springer Series in Reliability Engineering, Springer, edition 127, number 978-1-4471-6575-0, April.
    2. Yeh, Ruey Huei & Ho, Wen-Tsung & Tseng, Sheng-Tsaing, 2000. "Optimal production run length for products sold with warranty," European Journal of Operational Research, Elsevier, vol. 120(3), pages 575-582, February.
    3. Liu, Bin & Wu, Jun & Xie, Min, 2015. "Cost analysis for multi-component system with failure interaction under renewing free-replacement warranty," European Journal of Operational Research, Elsevier, vol. 243(3), pages 874-882.
    4. Jung, Ki Mun & Han, Sung Sil & Park, Dong Ho, 2008. "Optimization of cost and downtime for replacement model following the expiration of warranty," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 995-1003.
    5. Qingan Qiu & Lirong Cui & Dejing Kong, 2019. "Availability analysis and optimal inspection policy for systems with neglected down time," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(11), pages 2787-2809, June.
    6. Lijun Shang & Shubin Si & Shudong Sun & Tongdan Jin, 2018. "Optimal warranty design and post-warranty maintenance for products subject to stochastic degradation," IISE Transactions, Taylor & Francis Journals, vol. 50(10), pages 913-927, October.
    7. Wang, Jingjing & Qiu, Qingan & Wang, Huanhuan & Lin, Cong, 2021. "Optimal condition-based preventive maintenance policy for balanced systems," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    8. Wallace R. Blischke & Ernest M. Scheuer, 1981. "Applications of renewal theory in analysis of the free‐replacement warranty," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 28(2), pages 193-205, June.
    9. Qingan Qiu & Lirong Cui, 2019. "Availability analysis for general repairable systems with repair time threshold," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 48(3), pages 628-647, February.
    10. Murthy, D. N. P. & Blischke, W. R., 1992. "Product warranty management -- II: An integrated framework for study," European Journal of Operational Research, Elsevier, vol. 62(3), pages 261-281, November.
    11. Wu, Shaomin & Clements-Croome, Derek, 2007. "Burn-in policies for products having dormant states," Reliability Engineering and System Safety, Elsevier, vol. 92(3), pages 278-285.
    12. Shafiee, Mahmood & Chukova, Stefanka, 2013. "Maintenance models in warranty: A literature review," European Journal of Operational Research, Elsevier, vol. 229(3), pages 561-572.
    13. van Noortwijk, J.M. & van der Weide, J.A.M. & Kallen, M.J. & Pandey, M.D., 2007. "Gamma processes and peaks-over-threshold distributions for time-dependent reliability," Reliability Engineering and System Safety, Elsevier, vol. 92(12), pages 1651-1658.
    14. Mukhopadhyay, Koushiki & Liu, Bin & Bedford, Tim & Finkelstein, Maxim, 2023. "Remaining lifetime of degrading systems continuously monitored by degrading sensors," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    15. Qingan Qiu & Lirong Cui & Jingyuan Shen, 2018. "Availability and maintenance modeling for systems subject to dependent hard and soft failures," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 34(4), pages 513-527, July.
    16. Peng, Rui & He, Xiaofeng & Zhong, Chao & Kou, Gang & Xiao, Hui, 2022. "Preventive maintenance for heterogeneous parallel systems with two failure modes," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    17. Yves Balcer & Izzet Sahin, 1986. "Replacement Costs Under Warranty: Cost Moments and Time Variability," Operations Research, INFORMS, vol. 34(4), pages 554-559, August.
    18. Zhi‐Sheng Ye & Min Xie, 2015. "Rejoinder to ‘Stochastic modelling and analysis of degradation for highly reliable products’," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 31(1), pages 35-36, January.
    19. Shang, Lijun & Liu, Baoliang & Qiu, Qingan & Yang, Li, 2023. "Three-dimensional warranty and post-warranty maintenance of products with monitored mission cycles," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    20. Zhi‐Sheng Ye & Min Xie, 2015. "Stochastic modelling and analysis of degradation for highly reliable products," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 31(1), pages 16-32, January.
    21. Liu, Peng & Wang, Guanjun, 2023. "Generalized non-renewing replacement warranty policy and an age-based post-warranty maintenance strategy," European Journal of Operational Research, Elsevier, vol. 311(2), pages 567-580.
    22. Blischke, W. R. & Murthy, D. N. P., 1992. "Product warranty management -- I: A taxonomy for warranty policies," European Journal of Operational Research, Elsevier, vol. 62(2), pages 127-148, October.
    23. Liang, Xiaojun & Cui, Lirong & Wang, Ruiting, 2024. "Non-renewable warranty cost analysis for dependent series configuration with distinct warranty periods," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shang, Lijun & Liu, Baoliang & Qiu, Qingan & Yang, Li, 2023. "Three-dimensional warranty and post-warranty maintenance of products with monitored mission cycles," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    2. Chengye Ma & Yongjun Du & Lijun Shang & Li Yang & Kaiye Gao, 2023. "Random Maintenance Strategy Modeling of Warranted Products with Reliability Heterogeneity," Sustainability, MDPI, vol. 15(18), pages 1-19, September.
    3. Lijun Shang & Baoliang Liu & Kaiye Gao & Li Yang, 2023. "Random Warranty and Replacement Models Customizing from the Perspective of Heterogeneity," Mathematics, MDPI, vol. 11(15), pages 1-22, July.
    4. Lijun Shang & Xiguang Yu & Yongjun Du & Anquan Zou & Qingan Qiu, 2022. "An Optimal Random Hybrid Maintenance Policy of Systems under a Warranty with Rebate and Charge," Mathematics, MDPI, vol. 10(18), pages 1-19, September.
    5. Lijun Shang & Xiguang Yu & Liying Wang & Yongjun Du, 2022. "Design of Random Warranty and Maintenance Policy: From a Perspective of the Life Cycle," Mathematics, MDPI, vol. 10(20), pages 1-22, October.
    6. Shang, Lijun & Liu, Baoliang & Qiu, Qingan & Yang, Li & Du, Yongjun, 2023. "Designing warranty and maintenance policies for products subject to random working cycles," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    7. Dai, Anshu & Wang, Xin & Li, Yu & Li, Ting & He, Shuguang, 2023. "Design of a performance-based warranty policy with replacement–repair strategy and cumulative cost threshold," International Journal of Production Economics, Elsevier, vol. 255(C).
    8. Nan Zhang & Mitra Fouladirad & Anne Barros, 2018. "Warranty analysis of a two-component system with type I stochastic dependence," Journal of Risk and Reliability, , vol. 232(3), pages 274-283, June.
    9. Izzet Sahin & Hakan Polatoglu, 1995. "Distributions of manufacturer's and user's replacement costs under warranty," Naval Research Logistics (NRL), John Wiley & Sons, vol. 42(8), pages 1233-1250, December.
    10. Hashemi, M. & Asadi, M. & Tavangar, M., 2022. "Optimal maintenance strategies for coherent systems: A warranty dependent approach," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    11. Zhao, Xiujie & Liu, Bin & Xu, Jianyu & Wang, Xiao-Lin, 2023. "Imperfect maintenance policies for warranted products under stochastic performance degradation," European Journal of Operational Research, Elsevier, vol. 308(1), pages 150-165.
    12. Yukun Wang & Yiliu Liu & Aibo Zhang, 2019. "Preventive maintenance optimization for repairable products considering two-dimensional warranty and customer satisfaction," Journal of Risk and Reliability, , vol. 233(4), pages 553-566, August.
    13. Chen, Cheng-Kang & Lo, Chih-Chung & Weng, Tzu-Chun, 2017. "Optimal production run length and warranty period for an imperfect production system under selling price dependent on warranty period," European Journal of Operational Research, Elsevier, vol. 259(2), pages 401-412.
    14. Luo, Ming & Wu, Shaomin, 2019. "A comprehensive analysis of warranty claims and optimal policies," European Journal of Operational Research, Elsevier, vol. 276(1), pages 144-159.
    15. Wang, Xiaolin & Liu, Bin & Zhao, Xiujie, 2021. "A performance-based warranty for products subject to competing hard and soft failures," International Journal of Production Economics, Elsevier, vol. 233(C).
    16. Wang, Yukun & Liu, Zixian & Liu, Yiliu, 2015. "Optimal preventive maintenance strategy for repairable items under two-dimensional warranty," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 326-333.
    17. Kirkizoğlu, Zeynep & Karaer, Özgen, 2022. "After-sales service and warranty decisions of a durable goods manufacturer," Omega, Elsevier, vol. 113(C).
    18. Liang, Xiaojun & Cui, Lirong & Wang, Ruiting, 2024. "Non-renewable warranty cost analysis for dependent series configuration with distinct warranty periods," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    19. Li, Ting & He, Shuguang & Zhao, Xiujie, 2022. "Optimal warranty policy design for deteriorating products with random failure threshold," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    20. Yongjun Du & Lijun Shang & Qingan Qiu & Li Yang, 2022. "Optimum Post-Warranty Maintenance Policies for Products with Random Working Cycles," Mathematics, MDPI, vol. 10(10), pages 1-16, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:18:p:2845-:d:1477401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.