IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v250y2024ics0951832024003582.html
   My bibliography  Save this article

Analytical robust design optimization for hybrid design variables: An active-learning methodology based on polynomial chaos Kriging

Author

Listed:
  • Song, Chaolin
  • Shafieezadeh, Abdollah
  • Xiao, Rucheng
  • Sun, Bin

Abstract

In robust design optimization, statistical moments of performance are widely adopted in formulating robustness metrics. To address the high computational costs stemming from the many-query nature of such optimizations with respect to robustness metrics, analytical formulas of the statistical moments have been developed based on surrogate models. However, existing methods consider random variables as the sole model input, which excludes, from the application scope, problems that also involve deterministic design variables. To remedy this issue, this paper proposes a new Polynomial Chaos Kriging-based methodology for efficient and accurate analytical robust design optimization. The analytical solutions for the statistical moments of performance are developed considering that the Polynomial Chaos Kriging model is established in the augmented space of the deterministic design and random variables. This is achieved by systematically decoupling associations with deterministic input from random input, providing effective solutions even when the orthonormality of the basis function is not applicable in the augmented space. This work also presents an active-learning framework enabling seamless implementation of various numerical optimization methods. Several numerical examples and a practical application illustrate the performance and superiority of the proposed method.

Suggested Citation

  • Song, Chaolin & Shafieezadeh, Abdollah & Xiao, Rucheng & Sun, Bin, 2024. "Analytical robust design optimization for hybrid design variables: An active-learning methodology based on polynomial chaos Kriging," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
  • Handle: RePEc:eee:reensy:v:250:y:2024:i:c:s0951832024003582
    DOI: 10.1016/j.ress.2024.110286
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024003582
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110286?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:250:y:2024:i:c:s0951832024003582. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.