IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v243y2024ics0951832023006956.html
   My bibliography  Save this article

Causative analysis of freight railway accident in specific scenes using a data-driven Bayesian network

Author

Listed:
  • Chen, Xiyuan
  • Ma, Xiaoping
  • Jia, Limin
  • Zhang, Zhipeng
  • Chen, Fei
  • Wang, Ruojin

Abstract

As the freight railway system is a typical complex system, freight railway accidents have various and complex accident scenes. A Data-Driven Bayesian Network (DDBN) with random variables representing scene elements, accident causes, and accident consequences as nodes, and conditional dependencies between nodes as edges is proposed to identify the most significant accident causes in various and complex specific accident scenes. First, an unsupervised-supervised method is designed to define the states of nodes in the DDBN, considering the characteristics of the data involving both continuous and discrete states. Second, a greedy algorithm is proposed to mine the causal sequence between nodes, and the direction of edges in DDBN is established accordingly. Then, an NB-K2-MLE approach is proposed to generate the structure and parameters of the DDBN from data. Finally, a risk calculation function based on DDBN is proposed to calculate the risk of various accident causes in specific scenes. In empirical analysis based on real accident data, the inference accuracy of DDBN reached 87.92Â %, with precision and recall exceeding 70Â %. More importantly, the research results indicate that the distribution of accident causes will concentrate with the refinement and specific of the scene, and the main accident causes at the macro level cannot be fully applicable to accident prevention in specific scenes. The DDBN constructed in this study can provide data support for the determination of the significant accident causes and the development of targeted accident prevention strategies in various and complex specific scenes.

Suggested Citation

  • Chen, Xiyuan & Ma, Xiaoping & Jia, Limin & Zhang, Zhipeng & Chen, Fei & Wang, Ruojin, 2024. "Causative analysis of freight railway accident in specific scenes using a data-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023006956
    DOI: 10.1016/j.ress.2023.109781
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023006956
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109781?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Xiaoge & Mahadevan, Sankaran, 2021. "Bayesian network modeling of accident investigation reports for aviation safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    2. Huang, Wencheng & Zhang, Yue & Kou, Xingyi & Yin, Dezhi & Mi, Rongwei & Li, Linqing, 2020. "Railway dangerous goods transportation system risk analysis: An Interpretive Structural Modeling and Bayesian Network combining approach," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    3. Jones, B. & Jenkinson, I. & Yang, Z. & Wang, J., 2010. "The use of Bayesian network modelling for maintenance planning in a manufacturing industry," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 267-277.
    4. Ropero, R.F. & Renooij, S. & van der Gaag, L.C., 2018. "Discretizing environmental data for learning Bayesian-network classifiers," Ecological Modelling, Elsevier, vol. 368(C), pages 391-403.
    5. Chen, Tianyi & Wong, Yiik Diew & Shi, Xiupeng & Wang, Xueqin, 2022. "Optimized structure learning of Bayesian Network for investigating causation of vehicles’ on-road crashes," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    6. Dindar, Serdar & Kaewunruen, Sakdirat & An, Min, 2022. "A hierarchical Bayesian-based model for hazard analysis of climate effect on failures of railway turnout components," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    7. Fan, Shiqi & Blanco-Davis, Eduardo & Yang, Zaili & Zhang, Jinfen & Yan, Xinping, 2020. "Incorporation of human factors into maritime accident analysis using a data-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    8. Huang, Wencheng & Kou, Xingyi & Zhang, Yue & Mi, Rongwei & Yin, Dezhi & Xiao, Wei & Liu, Zhanru, 2021. "Operational failure analysis of high-speed electric multiple units: A Bayesian network-K2 algorithm-expectation maximization approach," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    9. Zhou, Xiaoyi & Lu, Pan & Zheng, Zijian & Tolliver, Denver & Keramati, Amin, 2020. "Accident Prediction Accuracy Assessment for Highway-Rail Grade Crossings Using Random Forest Algorithm Compared with Decision Tree," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    10. Zhang, D. & Yan, X.P. & Yang, Z.L. & Wall, A. & Wang, J., 2013. "Incorporation of formal safety assessment and Bayesian network in navigational risk estimation of the Yangtze River," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 93-105.
    11. Dindar, Serdar & Kaewunruen, Sakdirat & An, Min, 2020. "Bayesian network-based human error reliability assessment of derailments," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    12. Song, Bing & Zhang, Zhipeng & Qin, Yong & Liu, Xiang & Hu, Hao, 2022. "Quantitative analysis of freight train derailment severity with structured and unstructured data," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    13. Z. L. Yang & J. Wang & S. Bonsall & Q. G. Fang, 2009. "Use of Fuzzy Evidential Reasoning in Maritime Security Assessment," Risk Analysis, John Wiley & Sons, vol. 29(1), pages 95-120, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Haoqian & Wang, Yong & Zeng, Jing & Li, Fansong & Yang, Zhenhuan & Mei, Guiming & Ye, Yunguang, 2024. "Virtual point tracking method for online detection of relative wheel-rail displacement of railway vehicles," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    2. Sun, Xuting & Hu, Yue & Qin, Yichen & Zhang, Yuan, 2024. "Risk assessment of unmanned aerial vehicle accidents based on data-driven Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 248(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liang, Xinrui & Fan, Shiqi & Lucy, John & Yang, Zaili, 2022. "Risk analysis of cargo theft from freight supply chains using a data-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    2. Kaptan, Mehmet & Uğurlu, Özkan & Wang, Jin, 2021. "The effect of nonconformities encountered in the use of technology on the occurrence of collision, contact and grounding accidents," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    3. Zhou, Kaiwen & Xing, Wenbin & Wang, Jingbo & Li, Huanhuan & Yang, Zaili, 2024. "A data-driven risk model for maritime casualty analysis: A global perspective," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    4. Li, Huanhuan & Ren, Xujie & Yang, Zaili, 2023. "Data-driven Bayesian network for risk analysis of global maritime accidents," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    5. Yu, Qing & Liu, Kezhong & Chang, Chia-Hsun & Yang, Zaili, 2020. "Realising advanced risk assessment of vessel traffic flows near offshore wind farms," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    6. Wang, Xinjian & Xia, Guoqing & Zhao, Jian & Wang, Jin & Yang, Zaili & Loughney, Sean & Fang, Siming & Zhang, Shukai & Xing, Yongheng & Liu, Zhengjiang, 2023. "A novel method for the risk assessment of human evacuation from cruise ships in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    7. Sun, Xuting & Hu, Yue & Qin, Yichen & Zhang, Yuan, 2024. "Risk assessment of unmanned aerial vehicle accidents based on data-driven Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    8. Liu, Yanyan & Li, Keping & Yan, Dongyang, 2024. "Quantification analysis of potential risk in railway accidents: A new random walk based approach," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    9. Rungskunroch, Panrawee & Jack, Anson & Kaewunruen, Sakdirat, 2021. "Benchmarking on railway safety performance using Bayesian inference, decision tree and petri-net techniques based on long-term accidental data sets," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    10. Wen, Tao & Gao, Qiuya & Chen, Yu-wang & Cheong, Kang Hao, 2022. "Exploring the vulnerability of transportation networks by entropy: A case study of Asia–Europe maritime transportation network," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    11. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    12. Yang, Zhisen & Yang, Zaili & Yin, Jingbo, 2018. "Realising advanced risk-based port state control inspection using data-driven Bayesian networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 38-56.
    13. Di Zhang & Xinping Yan & Zaili Yang & Jin Wang, 2014. "An accident data–based approach for congestion risk assessment of inland waterways: A Yangtze River case," Journal of Risk and Reliability, , vol. 228(2), pages 176-188, April.
    14. Zhang, Jinfeng & Jin, Mei & Wan, Chengpeng & Dong, Zhijie & Wu, Xiaohong, 2024. "A Bayesian network-based model for risk modeling and scenario deduction of collision accidents of inland intelligent ships," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    15. Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    16. Nguyen, Son & Chen, Peggy Shu-Ling & Du, Yuquan & Shi, Wenming, 2019. "A quantitative risk analysis model with integrated deliberative Delphi platform for container shipping operational risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 129(C), pages 203-227.
    17. Hani Alyami & Paul Tae-Woo Lee & Zaili Yang & Ramin Riahi & Stephen Bonsall & Jin Wang, 2014. "An advanced risk analysis approach for container port safety evaluation," Maritime Policy & Management, Taylor & Francis Journals, vol. 41(7), pages 634-650, December.
    18. Fan, Shiqi & Blanco-Davis, Eduardo & Yang, Zaili & Zhang, Jinfen & Yan, Xinping, 2020. "Incorporation of human factors into maritime accident analysis using a data-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    19. Singh, Prashant & Pasha, Junayed & Moses, Ren & Sobanjo, John & Ozguven, Eren E. & Dulebenets, Maxim A., 2022. "Development of exact and heuristic optimization methods for safety improvement projects at level crossings under conflicting objectives," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    20. Bhuyan, Kasturi & Sharma, Hrishikesh, 2022. "Reliability analysis & performance-based code calibration for slabs/walls of protective structures subject to air blast loading," Reliability Engineering and System Safety, Elsevier, vol. 228(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023006956. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.