IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v197y2020ics0951832019308233.html
   My bibliography  Save this article

Bayesian network-based human error reliability assessment of derailments

Author

Listed:
  • Dindar, Serdar
  • Kaewunruen, Sakdirat
  • An, Min

Abstract

The knowledge acquired in relation to failures associated with components has made significant contributions to the development of components with increased reliability, as well as a reduction in the number of rail incidents caused by certain system defects. These new systems have led to innovative developments in both the operations and technology of rail networks. Hence, rail employees must now function in conditions that have high complexity that are hard to comprehend. The risk of failure caused by human error (such as by dispatchers, train crews and track engineers) has developed into a significant safety problem. This study is the world first to provide novel insights into better understanding human errors, which result in derailments at rail turnouts. A most- to-least-critical importance ranking of these errors is established throughout a novel risk management technique. Moreover, the new findings and recommendations of this research study have a strong potential for industry to improve the reliability of rail operation, and avoid safety concerns regarding train derailments at rail turnouts.

Suggested Citation

  • Dindar, Serdar & Kaewunruen, Sakdirat & An, Min, 2020. "Bayesian network-based human error reliability assessment of derailments," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
  • Handle: RePEc:eee:reensy:v:197:y:2020:i:c:s0951832019308233
    DOI: 10.1016/j.ress.2020.106825
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832019308233
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.106825?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Read, G.J.M. & Naweed, A. & Salmon, P.M., 2019. "Complexity on the rails: A systems-based approach to understanding safety management in rail transport," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 352-365.
    2. Serdar Dindar & Sakdirat Kaewunruen & Min An, 2018. "Identification of appropriate risk analysis techniques for railway turnout systems," Journal of Risk Research, Taylor & Francis Journals, vol. 21(8), pages 974-995, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Catelani, Marcantonio & Ciani, Lorenzo & Guidi, Giulia & Patrizi, Gabriele, 2021. "An enhanced SHERPA (E-SHERPA) method for human reliability analysis in railway engineering," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Dindar, Serdar & Kaewunruen, Sakdirat & An, Min, 2022. "A hierarchical Bayesian-based model for hazard analysis of climate effect on failures of railway turnout components," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    3. Ji, Chenyi & Su, Xing & Qin, Zhongfu & Nawaz, Ahsan, 2022. "Probability Analysis of Construction Risk based on Noisy-or Gate Bayesian Networks," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    4. Chen, Xiyuan & Ma, Xiaoping & Jia, Limin & Zhang, Zhipeng & Chen, Fei & Wang, Ruojin, 2024. "Causative analysis of freight railway accident in specific scenes using a data-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    5. Zhou, Jian-Lan & Lei, Yi, 2020. "A slim integrated with empirical study and network analysis for human error assessment in the railway driving process," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    6. Jang, Inseok & Kim, Yochan & Park, Jinkyun, 2021. "Investigating the Effect of Task Complexity on the Occurrence of Human Errors observed in a Nuclear Power Plant Full-Scope Simulator," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    7. Song, Bing & Zhang, Zhipeng & Qin, Yong & Liu, Xiang & Hu, Hao, 2022. "Quantitative analysis of freight train derailment severity with structured and unstructured data," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    8. Zhou, Jian-Lan & Tu, Ren-Fang & Xiao, Hai, 2022. "Large-scale group decision-making to facilitate inter-rater reliability of human-factors analysis for the railway system," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    9. Zhou, Jian-Lan & Yu, Ze-Tai & Xiao, Ren-Bin, 2022. "A large-scale group Success Likelihood Index Method to estimate human error probabilities in the railway driving process," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    10. Rungskunroch, Panrawee & Jack, Anson & Kaewunruen, Sakdirat, 2021. "Benchmarking on railway safety performance using Bayesian inference, decision tree and petri-net techniques based on long-term accidental data sets," Reliability Engineering and System Safety, Elsevier, vol. 213(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shin, Sung-Min & Lee, Sang Hun & Shin, Seung Ki, 2022. "A novel approach for quantitative importance analysis of safety DI&C systems in the nuclear field," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    2. Zhao, Na, 2019. "Managing interactive collaborative mega project supply chains under infectious risks," International Journal of Production Economics, Elsevier, vol. 218(C), pages 275-286.
    3. Khastgir, Siddartha & Brewerton, Simon & Thomas, John & Jennings, Paul, 2021. "Systems Approach to Creating Test Scenarios for Automated Driving Systems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    4. Dindar, Serdar & Kaewunruen, Sakdirat & An, Min, 2022. "A hierarchical Bayesian-based model for hazard analysis of climate effect on failures of railway turnout components," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    5. Lin, Boliang & Zhao, Yinan, 2021. "Synchronized optimization of EMU train assignment and second-level preventive maintenance scheduling," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    6. Chelouati, Mohammed & Boussif, Abderraouf & Beugin, Julie & El Koursi, El-Miloudi, 2023. "Graphical safety assurance case using Goal Structuring Notation (GSN) — challenges, opportunities and a framework for autonomous trains," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    7. Regina Lamedica & Alessandro Ruvio & Laura Palagi & Nicola Mortelliti, 2020. "Optimal Siting and Sizing of Wayside Energy Storage Systems in a D.C. Railway Line," Energies, MDPI, vol. 13(23), pages 1-22, November.
    8. Bugalia, Nikhil & Maemura, Yu & Ozawa, Kazumasa, 2021. "Characteristics of enhanced safety coordination between high-speed rail operators and manufacturers," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. Ben Riemersma & Rolf Künneke & Genserik Reniers & Aad Correljé, 2020. "Upholding Safety in Future Energy Systems: The Need for Systemic Risk Assessment," Energies, MDPI, vol. 13(24), pages 1-20, December.
    10. Lam, C.Y. & Tai, K., 2020. "Network topological approach to modeling accident causations and characteristics: Analysis of railway incidents in Japan," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    11. Zhao, Xian & Dong, Bingbing & Wang, Xiaoyue, 2023. "Reliability analysis of a two-dimensional voting system equipped with protective devices considering triggering failures," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    12. Shin, Sung-Min & Lee, Sang Hun & Shin, Seung Ki & Jang, Inseok & Park, Jinkyun, 2021. "STPA-Based Hazard and Importance Analysis on NPP Safety I&C Systems Focusing on Human–System Interactions," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    13. Hong, Wei-Ting & Clifton, Geoffrey & Nelson, John D., 2024. "A data-driven conceptual framework for understanding the nature of hazards in railway accidents," Transport Policy, Elsevier, vol. 152(C), pages 102-117.
    14. Antonello, Federico & Buongiorno, Jacopo & Zio, Enrico, 2022. "A methodology to perform dynamic risk assessment using system theory and modeling and simulation: Application to nuclear batteries," Reliability Engineering and System Safety, Elsevier, vol. 228(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:197:y:2020:i:c:s0951832019308233. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.