IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v246y2024ics0951832024001613.html
   My bibliography  Save this article

Virtual point tracking method for online detection of relative wheel-rail displacement of railway vehicles

Author

Listed:
  • Li, Haoqian
  • Wang, Yong
  • Zeng, Jing
  • Li, Fansong
  • Yang, Zhenhuan
  • Mei, Guiming
  • Ye, Yunguang

Abstract

Relative wheel-rail displacement (RWRD) is an important physical quantity that responds to the hunting stability and running safety of railway vehicles but detecting this physical quantity is challenging during train operation due to the complex service environment and the nonlinearity of vehicle-rail system. To address this problem, this paper proposes a virtual point tracking (VPT) method to detect RWRD. First, a series of regions of interest (ROIs) in the preprocessed wheel-rail contact images are extracted using a simplified YOLO (SYOLO) model. Then, some key positions of the wheel and rail on the extracted ROIs are identified using an improved UNet (IUNet) model and characterized by virtual points. Finally, the global coordinates of the virtual points in the whole wheel-rail contact image are calculated to obtain the final RWRD. To demonstrate the feasibility of the VPT method, it is used to detect the RWRD of a vehicle operating on a full-scale roller rig. For comparison, the original UNet model is directly used to detect the RWRD. Two quantities, Mean Absolute Error (MAE) and Root Mean Square Error (RMSE), are applied for quantitative analysis and the results show that the VPT method can identify the RWRD more reliably and accurately.

Suggested Citation

  • Li, Haoqian & Wang, Yong & Zeng, Jing & Li, Fansong & Yang, Zhenhuan & Mei, Guiming & Ye, Yunguang, 2024. "Virtual point tracking method for online detection of relative wheel-rail displacement of railway vehicles," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
  • Handle: RePEc:eee:reensy:v:246:y:2024:i:c:s0951832024001613
    DOI: 10.1016/j.ress.2024.110087
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024001613
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110087?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Braga, Joaquim A.P. & Andrade, António R., 2021. "Multivariate statistical aggregation and dimensionality reduction techniques to improve monitoring and maintenance in railways: The wheelset component," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Kang, Renwei & Wang, Junfeng & Chen, Jianqiu & Zhou, Jingjing & Pang, Yanzhi & Guo, Longlong & Cheng, Jianfeng, 2022. "A method of online anomaly perception and failure prediction for high-speed automatic train protection system," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Shangguan, Anqi & Xie, Guo & Fei, Rong & Mu, Lingxia & Hei, Xinhong, 2023. "Train wheel degradation generation and prediction based on the time series generation adversarial network," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    4. Chen, Xiyuan & Ma, Xiaoping & Jia, Limin & Zhang, Zhipeng & Chen, Fei & Wang, Ruojin, 2024. "Causative analysis of freight railway accident in specific scenes using a data-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    5. Song, Bing & Zhang, Zhipeng & Qin, Yong & Liu, Xiang & Hu, Hao, 2022. "Quantitative analysis of freight train derailment severity with structured and unstructured data," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    6. Neves Costa, João & Ambrósio, Jorge & Andrade, António R. & Frey, Daniel, 2023. "Safety assessment using computer experiments and surrogate modeling: Railway vehicle safety and track quality indices," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    7. Mohammadi, Reza & He, Qing, 2022. "A deep reinforcement learning approach for rail renewal and maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    8. Ye, Yunguang & Huang, Caihong & Zeng, Jing & Wang, Suqin & Liu, Chaotao & Li, Fansong, 2023. "Predicting railway wheel wear by calibrating existing wear models: Principle and application," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    9. Chai, Ming & Zhang, Xinyi & Schlingloff, Bernd-Holger & Tang, Tao & Liu, Hongjie, 2024. "Online hazard prediction of train operations with parametric hybrid automata based runtime verification," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    10. Li, Zai-Wei & Zhou, Yun-Lai & Liu, Xiao-Zhou & Abdel Wahab, Magd, 2023. "Service reliability assessment of ballastless track in high speed railway via improved response surface method," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Braga, Joaquim A.P. & Costa, João N. & Ambrósio, Jorge & Frey, Daniel & Andrade, António R., 2024. "Robust assessment of railway vehicle safety risks in operation using a proposed data-driven wheel profile generation approach: Design of computer experiments and surrogate models," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    2. Zhang, Xiaoxi & Pan, Yongjun & Zhou, Junxiao & Li, Zhixiong & Liao, Tianjun & Li, Jie, 2024. "Forward and reverse design of adhesive in batteries via dynamics and machine learning algorithms for enhanced mechanical safety," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    3. Wang, Jian & Gao, Shibin & Yu, Long & Liu, Xingyang & Neri, Ferrante & Zhang, Dongkai & Kou, Lei, 2024. "Uncertainty-aware trustworthy weather-driven failure risk predictor for overhead contact lines," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    4. Rokhforoz, Pegah & Montazeri, Mina & Fink, Olga, 2023. "Safe multi-agent deep reinforcement learning for joint bidding and maintenance scheduling of generation units," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    5. Tseremoglou, Iordanis & Santos, Bruno F., 2024. "Condition-Based Maintenance scheduling of an aircraft fleet under partial observability: A Deep Reinforcement Learning approach," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    6. Shi, Wen & Zhou, Qing & Zhou, Yanju, 2023. "An efficient elementary effect-based method for sensitivity analysis in identifying main and two-factor interaction effects," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    7. Fallahdizcheh, Amirhossein & Wang, Chao, 2022. "Transfer learning of degradation modeling and prognosis based on multivariate functional analysis with heterogeneous sampling rates," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    8. Liu, Jie & Xu, Yubo & Wang, Lisong, 2022. "Fault information mining with causal network for railway transportation system," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    9. He, Rui & Tian, Zhigang & Wang, Yifei & Zuo, Mingjian & Guo, Ziwei, 2023. "Condition-based maintenance optimization for multi-component systems considering prognostic information and degraded working efficiency," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    10. Liu, Hengchang & Li, Bo & Yao, Fengming & Hu, Gexi & Xie, Lei, 2024. "Maintenance optimization of multi-unit balanced systems using deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    11. Lee, Dongkyu & Song, Junho, 2023. "Risk-informed operation and maintenance of complex lifeline systems using parallelized multi-agent deep Q-network," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    12. Morato, P.G. & Andriotis, C.P. & Papakonstantinou, K.G. & Rigo, P., 2023. "Inference and dynamic decision-making for deteriorating systems with probabilistic dependencies through Bayesian networks and deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    13. Dai, Xinliang & Qu, Sheng & Sui, Hao & Wu, Pingbo, 2022. "Reliability modelling of wheel wear deterioration using conditional bivariate gamma processes and Bayesian hierarchical models," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    14. Yan, Dongyang & Li, Keping & Zhu, Qiaozhen & Liu, Yanyan, 2023. "A railway accident prevention method based on reinforcement learning – Active preventive strategy by multi-modal data," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    15. Yang, Sen & Zhang, Yi & Lu, Xinzheng & Guo, Wei & Miao, Huiquan, 2024. "Multi-agent deep reinforcement learning based decision support model for resilient community post-hazard recovery," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    16. Liu, Xuan & Meng, Huixing & An, Xu & Xing, Jinduo, 2024. "Integration of functional resonance analysis method and reinforcement learning for updating and optimizing emergency procedures in variable environments," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    17. Zheng, Niannian & Luan, Xiaoli & Shardt, Yuri A.W. & Liu, Fei, 2024. "Dynamic-controlled principal component analysis for fault detection and automatic recovery," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    18. Lee, Juseong & Mitici, Mihaela, 2023. "Deep reinforcement learning for predictive aircraft maintenance using probabilistic Remaining-Useful-Life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    19. Jin, Yuxue & Geng, Jie & Lv, Chuan & Chi, Ying & Zhao, Tingdi, 2023. "A methodology for equipment condition simulation and maintenance threshold optimization oriented to the influence of multiple events," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    20. Valcamonico, Dario & Baraldi, Piero & Zio, Enrico & Decarli, Luca & Crivellari, Anna & Rosa, Laura La, 2024. "Combining natural language processing and bayesian networks for the probabilistic estimation of the severity of process safety events in hydrocarbon production assets," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:246:y:2024:i:c:s0951832024001613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.