IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v226y2022ics0951832022003271.html
   My bibliography  Save this article

Risk analysis of cargo theft from freight supply chains using a data-driven Bayesian network

Author

Listed:
  • Liang, Xinrui
  • Fan, Shiqi
  • Lucy, John
  • Yang, Zaili

Abstract

Cargo theft has been among the most concerning risks influencing global freight supply chains, which causes serious supply chain disruptions, injuries/deaths, economic loss, and environmental damage. However, there are very few studies on the risk analysis of cargo theft, particularly in a quantitative manner, and fewer on the relevant risk factors affecting theft-related accidents in the current literature. This paper aims to analyse the risk influential factors (RIFs) of cargo theft and predict the occurrence likelihood of different types of cargo theft accidents. The historical data of 9316 cargo theft accidents that happened in the UK from 2009 to 2021 were first collected from the TAPA IIS database, and then purified and trained to construct a Bayesian network (BN) based cargo theft risk analysis model. The data-driven BN interprets the interdependency of RIFs and their combined effects on the occurrence of different types of cargo theft accidents. Compared with the previous studies, this paper makes new contributions, including that (1) The cargo theft RIFs are identified from the literature and accident records. (2) A data-driven BN is proposed to construct the model with uncertainty to realise cargo theft risk prediction and diagnosis. (3) The critical RIFs contributing to cargo theft are evaluated and prioritised to predict the occurrence of possible cargo theft accidents. (4) The real accidents are investigated to verify the model and draw useful insights for cargo theft prevention. The findings show that the most influential RIFs for the occurrence of cargo theft accidents are product category, year, location type, modus operandi (MO), and region. The findings also reveal the combined risk contributions of the RIFs, hence providing useful insights for cost-effective theft risk control in practice.

Suggested Citation

  • Liang, Xinrui & Fan, Shiqi & Lucy, John & Yang, Zaili, 2022. "Risk analysis of cargo theft from freight supply chains using a data-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:reensy:v:226:y:2022:i:c:s0951832022003271
    DOI: 10.1016/j.ress.2022.108702
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022003271
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108702?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wu, Bing & Tang, Yuheng & Yan, Xinping & Guedes Soares, Carlos, 2021. "Bayesian Network modelling for safety management of electric vehicles transported in RoPax ships," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    2. Zhang, Xiaoge & Mahadevan, Sankaran, 2021. "Bayesian network modeling of accident investigation reports for aviation safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    3. Nguyen, Son & Chen, Peggy Shu-Ling & Du, Yuquan & Thai, Vinh V., 2021. "An Operational Risk Analysis Model for Container Shipping Systems considering Uncertainty Quantification," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    4. Gleb Belov & Natashia L. Boland & Martin W. P. Savelsbergh & Peter J. Stuckey, 2020. "Logistics optimization for a coal supply chain," Journal of Heuristics, Springer, vol. 26(2), pages 269-300, April.
    5. Jones, B. & Jenkinson, I. & Yang, Z. & Wang, J., 2010. "The use of Bayesian network modelling for maintenance planning in a manufacturing industry," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 267-277.
    6. Trucco, P. & Cagno, E. & Ruggeri, F. & Grande, O., 2008. "A Bayesian Belief Network modelling of organisational factors in risk analysis: A case study in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 93(6), pages 845-856.
    7. Yang, Zaili & Yang, Zhisen & Smith, John & Robert, Bostock Adam Peter, 2021. "Risk analysis of bicycle accidents: A Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    8. Daniel Ekwall & Björn Lantz, 2018. "The use of violence in cargo theft – a supply chain disruption case," Journal of Transportation Security, Springer, vol. 11(1), pages 3-21, June.
    9. ., 2020. "From Chinas logistics to Chinas geologistics," Chapters, in: China’s Global Vision and Actions, chapter 2, pages 14-35, Edward Elgar Publishing.
    10. Dindar, Serdar & Kaewunruen, Sakdirat & An, Min, 2022. "A hierarchical Bayesian-based model for hazard analysis of climate effect on failures of railway turnout components," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    11. Yu, Yun-Chi & Gardoni, Paolo, 2022. "Predicting road blockage due to building damage following earthquakes," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    12. Liu, Kezhong & Yu, Qing & Yang, Zhisen & Wan, Chengpeng & Yang, Zaili, 2022. "BN-based port state control inspection for Paris MoU: New risk factors and probability training using big data," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    13. Fan, Shiqi & Blanco-Davis, Eduardo & Yang, Zaili & Zhang, Jinfen & Yan, Xinping, 2020. "Incorporation of human factors into maritime accident analysis using a data-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    14. Yang, Zhisen & Wan, Chengpeng & Yang, Zaili & Yu, Qing, 2021. "Using Bayesian network-based TOPSIS to aid dynamic port state control detention risk control decision," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    15. Guerin, Leonardo & Vieira, José Geraldo Vidal & de Oliveira, Renata Lúcia Magalhães & de Oliveira, Leise Kelli & de Miranda Vieira, Henrique Ewbank & Dablanc, Laetitia, 2021. "The geography of warehouses in the São Paulo Metropolitan Region and contributing factors to this spatial distribution," Journal of Transport Geography, Elsevier, vol. 91(C).
    16. Christopher A. Boone & Joseph B. Skipper & Adam Murfield & Monique L. Ueltschy Murfield, 2016. "Cargo theft in the motor carrier industry: an exploratory study," Journal of Transportation Security, Springer, vol. 9(1), pages 57-70, June.
    17. Yu, Qing & Liu, Kezhong & Yang, Zhisen & Wang, Hongbo & Yang, Zaili, 2021. "Geometrical risk evaluation of the collisions between ships and offshore installations using rule-based Bayesian reasoning," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    18. Yang, Zhisen & Yang, Zaili & Yin, Jingbo, 2018. "Realising advanced risk-based port state control inspection using data-driven Bayesian networks," Transportation Research Part A: Policy and Practice, Elsevier, vol. 110(C), pages 38-56.
    19. Michael H. Belzer & Peter F. Swan, 2011. "Supply Chain Security: Agency Theory and Port Drayage Drivers," The Economic and Labour Relations Review, , vol. 22(1), pages 41-63, May.
    20. Léonardo Guerin & José Geraldo Vidal Vieira & Renata Lúcia Magalhães de Oliveira & Leise Kelli de Oliveira & Henrique Ewbank de Miranda Vieira & Laetitia Dablanc, 2021. "The geography of warehouses in the São Paulo Metropolitan Region and contributing factors to this spatial distribution," Post-Print hal-03565703, HAL.
    21. Yin, Jiateng & Ren, Xianliang & Liu, Ronghui & Tang, Tao & Su, Shuai, 2022. "Quantitative analysis for resilience-based urban rail systems: A hybrid knowledge-based and data-driven approach," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    22. Ung, S.T., 2021. "Navigation Risk estimation using a modified Bayesian Network modeling-a case study in Taiwan," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    23. Daniel Ekwall & Helmut Brüls & Daniel Wyer, 2016. "Theft of pharmaceuticals during transport in Europe," Journal of Transportation Security, Springer, vol. 9(1), pages 1-16, June.
    24. Z. L. Yang & J. Wang & S. Bonsall & Q. G. Fang, 2009. "Use of Fuzzy Evidential Reasoning in Maritime Security Assessment," Risk Analysis, John Wiley & Sons, vol. 29(1), pages 95-120, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Ekwall & Björn Lantz, 2022. "Seasonality of incident types in transport crime – Analysis of TAPA statistics," Journal of Transportation Security, Springer, vol. 15(3), pages 193-222, December.
    2. Sun, Xuting & Hu, Yue & Qin, Yichen & Zhang, Yuan, 2024. "Risk assessment of unmanned aerial vehicle accidents based on data-driven Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    3. Ziegler Haselein, Bruno & da Silva, Jonny Carlos & Hooey, Becky L., 2024. "Multiple machine learning modeling on near mid-air collisions: An approach towards probabilistic reasoning," Reliability Engineering and System Safety, Elsevier, vol. 244(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Huanhuan & Ren, Xujie & Yang, Zaili, 2023. "Data-driven Bayesian network for risk analysis of global maritime accidents," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    2. Liu, Kezhong & Yu, Qing & Yang, Zhisen & Wan, Chengpeng & Yang, Zaili, 2022. "BN-based port state control inspection for Paris MoU: New risk factors and probability training using big data," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    3. Chen, Xiyuan & Ma, Xiaoping & Jia, Limin & Zhang, Zhipeng & Chen, Fei & Wang, Ruojin, 2024. "Causative analysis of freight railway accident in specific scenes using a data-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    4. Yu, Qing & Teixeira, Ângelo Palos & Liu, Kezhong & Rong, Hao & Guedes Soares, Carlos, 2021. "An integrated dynamic ship risk model based on Bayesian Networks and Evidential Reasoning," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    5. Antão, P. & Sun, S. & Teixeira, A.P. & Guedes Soares, C., 2023. "Quantitative assessment of ship collision risk influencing factors from worldwide accident and fleet data," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    6. Yang, Zhisen & Wan, Chengpeng & Yu, Qing & Yin, Jingbo & Yang, Zaili, 2023. "A machine learning-based Bayesian model for predicting the duration of ship detention in PSC inspection," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    7. Guo, Yunlong & Jin, Yongxing & Hu, Shenping & Yang, Zaili & Xi, Yongtao & Han, Bing, 2023. "Risk evolution analysis of ship pilotage operation by an integrated model of FRAM and DBN," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    8. Yu, Qing & Liu, Kezhong & Chang, Chia-Hsun & Yang, Zaili, 2020. "Realising advanced risk assessment of vessel traffic flows near offshore wind farms," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    9. Zhou, Kaiwen & Xing, Wenbin & Wang, Jingbo & Li, Huanhuan & Yang, Zaili, 2024. "A data-driven risk model for maritime casualty analysis: A global perspective," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    10. Sun, Xuting & Hu, Yue & Qin, Yichen & Zhang, Yuan, 2024. "Risk assessment of unmanned aerial vehicle accidents based on data-driven Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    11. Wen, Tao & Gao, Qiuya & Chen, Yu-wang & Cheong, Kang Hao, 2022. "Exploring the vulnerability of transportation networks by entropy: A case study of Asia–Europe maritime transportation network," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    12. Fan, Shiqi & Blanco-Davis, Eduardo & Yang, Zaili & Zhang, Jinfen & Yan, Xinping, 2020. "Incorporation of human factors into maritime accident analysis using a data-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    13. Rong, H. & Teixeira, A.P. & Guedes Soares, C., 2022. "Maritime traffic probabilistic prediction based on ship motion pattern extraction," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    14. Özkan Uğurlu & Serdar Yıldız & Sean Loughney & Jin Wang & Shota Kuntchulia & Irakli Sharabidze, 2020. "Analyzing Collision, Grounding, and Sinking Accidents Occurring in the Black Sea Utilizing HFACS and Bayesian Networks," Risk Analysis, John Wiley & Sons, vol. 40(12), pages 2610-2638, December.
    15. Kaptan, Mehmet & Uğurlu, Özkan & Wang, Jin, 2021. "The effect of nonconformities encountered in the use of technology on the occurrence of collision, contact and grounding accidents," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    16. Sezer, Sukru Ilke & Camliyurt, Gokhan & Aydin, Muhmmet & Akyuz, Emre & Gardoni, Paolo, 2023. "A bow-tie extended D-S evidence-HEART modelling for risk analysis of cargo tank cracks on oil/chemical tanker," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    17. Xiaoyuan Zhao & Haiwen Yuan & Qing Yu, 2021. "Autonomous Vessels in the Yangtze River: A Study on the Maritime Accidents Using Data-Driven Bayesian Networks," Sustainability, MDPI, vol. 13(17), pages 1-17, September.
    18. Fan, Lixian & Zhang, Meng & Yin, Jingbo & Zhang, Jinfen, 2022. "Impacts of dynamic inspection records on port state control efficiency using Bayesian network analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    19. Yang, Zhisen & Yu, Qing & Yang, Zaili & Wan, Chengpeng, 2024. "A data-driven Bayesian model for evaluating the duration of detention of ships in PSC inspections," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    20. Fan, Shiqi & Yang, Zaili, 2024. "Accident data-driven human fatigue analysis in maritime transport using machine learning," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:226:y:2022:i:c:s0951832022003271. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.