IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v241y2024ics0951832023005513.html
   My bibliography  Save this article

A multidimensional quantitative risk assessment framework for dense areas of stay points for urban HazMat vehicles

Author

Listed:
  • Li, Guoqi
  • Pu, Gang
  • Yang, Jiaxin
  • Jiang, Xinguo

Abstract

Vehicles with Hazardous Materials (HazMat) are one of important factors causing safety risk in urban transportation system. Currently, the study of HazMat transport risk is mainly focused on the transport route where the vehicles are on the move. However, vehicular dwelling states such as loading and unloading, refueling, maintenance and resting constitute the vast majority of the time spent on HazMat logistics activities. The study attempts to develop a multidimensional quantitative risk assessment framework for HazMat vehicles in dense areas of stay points. The framework includes four indicators, i.e., direct damage risk, rescue accessibility and capacity, evacuation vulnerability, and environmental vulnerability, and adopts a comprehensive assessment model based on entropy weight TOPSIS method to evaluate the cumulative risk of HazMat vehicles in dense areas of stay points. Subsequently, this study conducted a case study based on HazMat vehicle trajectory data from Chengdu, China and visualizes the spatial distribution of different risk levels with SAFETI simulation and GIS technology. The study findings can serve as a reference for emergency management to develop preventive measures to eliminate hidden risks of HazMat vehicular dwelling states.

Suggested Citation

  • Li, Guoqi & Pu, Gang & Yang, Jiaxin & Jiang, Xinguo, 2024. "A multidimensional quantitative risk assessment framework for dense areas of stay points for urban HazMat vehicles," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:reensy:v:241:y:2024:i:c:s0951832023005513
    DOI: 10.1016/j.ress.2023.109637
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023005513
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109637?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Xin & Chen, Chao & Hong, Yi-du & Yang, Fu-qiang, 2023. "Exploring hazardous chemical explosion accidents with association rules and Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    2. Chen, Yinuo & Tian, Zhigang & He, Rui & Wang, Yifei & Xie, Shuyi, 2023. "Discovery of potential risks for the gas transmission station using monitoring data and the OOBN method," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    3. Li, Honglian & Huang, Jin & Hu, Yao & Wang, Shangyu & Liu, Jing & Yang, Liu, 2021. "A new TMY generation method based on the entropy-based TOPSIS theory for different climatic zones in China," Energy, Elsevier, vol. 231(C).
    4. Xie, Shuyi & Dong, Shaohua & Chen, Yinuo & Peng, Yujie & Li, Xincai, 2021. "A novel risk evaluation method for fire and explosion accidents in oil depots using bow-tie analysis and risk matrix analysis method based on cloud model theory," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Tao, Longlong & Wu, Jie & Ge, Daochuan & Chen, Liwei & Sun, Ming, 2022. "Risk-informed based comprehensive path-planning method for radioactive materials road transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    6. Huang, Wencheng & Zhang, Yue & Yu, Yaocheng & Xu, Yifei & Xu, Minhao & Zhang, Rui & De Dieu, Gatesi Jean & Yin, Dezhi & Liu, Zhanru, 2021. "Historical data-driven risk assessment of railway dangerous goods transportation system: Comparisons between Entropy Weight Method and Scatter Degree Method," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    7. Puisa, Romanas & Montewka, Jakub & Krata, Przemyslaw, 2023. "A framework estimating the minimum sample size and margin of error for maritime quantitative risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    8. Huang, Wencheng & Zhang, Yue & Kou, Xingyi & Yin, Dezhi & Mi, Rongwei & Li, Linqing, 2020. "Railway dangerous goods transportation system risk analysis: An Interpretive Structural Modeling and Bayesian Network combining approach," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    9. Chen, Chao & Reniers, Genserik & Khakzad, Nima, 2021. "A dynamic multi-agent approach for modeling the evolution of multi-hazard accident scenarios in chemical plants," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    10. Wan, Huaxian & Gao, Zihe & Ji, Jie & Zhang, Yongming, 2019. "Experimental study on flame radiant heat flux from two heptane storage pools and its application to estimating safety distance," Energy, Elsevier, vol. 182(C), pages 11-20.
    11. Sun, Daniel(Jian) & Ding, Xueqing, 2019. "Spatiotemporal evolution of ridesourcing markets under the new restriction policy: A case study in Shanghai," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 227-239.
    12. Wu, Weitiao & Ma, Jian & Liu, Ronghui & Jin, Wenzhou, 2022. "Multi-class hazmat distribution network design with inventory and superimposed risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    13. Noguchi, H. & Hienuki, S. & Fuse, M., 2020. "Network theory-based accident scenario analysis for hazardous material transport: A case study of liquefied petroleum gas transport in japan," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Jinbiao & Tan, Lingling & Ma, Yaping, 2024. "An integrated risk assessment method for urban areas due to chemical leakage accidents," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    2. Jing, Qi & Li, Tong & Lai, Yuying & Wang, Yumeng & Li, Yuntao & Qi, Sheng, 2024. "Study on risk assessment models for the aggregation of vehicles transporting hazardous chemicals," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    3. Hai, Nan & Gong, Daqing & Dai, Zixuan, 2024. "Target spectrum-based risk analysis model for utility tunnel O&M in multiple scenarios and its application," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    4. Lin, Qindong & Zhu, Xinguang & Gan, Yundan & Feng, Chun & Jiao, Wenjun, 2024. "Simulation-based personal fatality risk assessment due to the fragmentation hazard," Reliability Engineering and System Safety, Elsevier, vol. 251(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Jinpei & Bai, Xuejie & Liu, Yankui, 2023. "Globalized robust bilevel optimization model for hazmat transport network design considering reliability," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    2. Izdebski, Mariusz & Jacyna-Gołda, Ilona & Gołda, Paweł, 2022. "Minimisation of the probability of serious road accidents in the transport of dangerous goods," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    3. Tao, Longlong & Wu, Jie & Ge, Daochuan & Chen, Liwei & Sun, Ming, 2022. "Risk-informed based comprehensive path-planning method for radioactive materials road transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    4. Gu, Shuang & Li, Keping & Feng, Tao & Yan, Dongyang & Liu, Yanyan, 2022. "The prediction of potential risk path in railway traffic events," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    5. Laihao Ma & Xiaoxue Ma & Jingwen Zhang & Qing Yang & Kai Wei, 2021. "Identifying the Weaker Function Links in the Hazardous Chemicals Road Transportation System in China," IJERPH, MDPI, vol. 18(13), pages 1-17, July.
    6. Huang, Wencheng & Yin, Dezhi & Xu, Yifei & Zhang, Rui & Xu, Minhao, 2022. "Using N-K Model to quantitatively calculate the variability in Functional Resonance Analysis Method," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    7. Li, Yuntao & Wang, Yumeng & Lai, Yuying & Shuai, Jian & Zhang, Laibin, 2023. "Monte Carlo-based quantitative risk assessment of parking areas for vehicles carrying hazardous chemicals," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    8. Liu, Jinbiao & Tan, Lingling & Ma, Yaping, 2024. "An integrated risk assessment method for urban areas due to chemical leakage accidents," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    9. Guo, Jian & Ma, Kaijiang, 2024. "Risk analysis for hazardous chemical vehicle-bridge transportation system: A dynamic Bayesian network model incorporating vehicle dynamics," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    10. Huang, Wencheng & Zhang, Yue & Yin, Dezhi & Zuo, Borui & Liu, Zhanru, 2021. "Urban bus accident analysis: based on a Tropos Goal Risk-Accident Framework considering Learning From Incidents process," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    11. Zhang, Hengqi & Geng, Hua & Zeng, Huarong & Jiang, Li, 2023. "Dynamic risk evaluation and control of electrical personal accidents," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    12. Liu, Yanyan & Li, Keping & Yan, Dongyang, 2024. "Quantification analysis of potential risk in railway accidents: A new random walk based approach," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    13. Rungskunroch, Panrawee & Jack, Anson & Kaewunruen, Sakdirat, 2021. "Benchmarking on railway safety performance using Bayesian inference, decision tree and petri-net techniques based on long-term accidental data sets," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    14. Chen, Fangxi & Yin, Zhiwei & Ye, Yingwei & Sun, Daniel(Jian), 2020. "Taxi hailing choice behavior and economic benefit analysis of emission reduction based on multi-mode travel big data," Transport Policy, Elsevier, vol. 97(C), pages 73-84.
    15. Jiayue Xun & Min Zhang & Gaofeng Xu & Xinyue Guo, 2024. "Diversity and Influencing Factors of Public Service Facilities in Urban (Suburban) Railway Life Circle—Evidence from Beijing Subway Line S1, China," Land, MDPI, vol. 13(8), pages 1-20, August.
    16. Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    17. Di, Yining & Xu, Meng & Zhu, Zheng & Yang, Hai & Chen, Xiqun, 2022. "Analysis of ride-sourcing drivers' working Pattern(s) via spatiotemporal work slices: A case study in Hangzhou," Transport Policy, Elsevier, vol. 125(C), pages 336-351.
    18. Longlong He & Ruiyu Pan & Yafei Wang & Jiani Gao & Tianze Xu & Naqi Zhang & Yue Wu & Xuhui Zhang, 2024. "A Case Study of Accident Analysis and Prevention for Coal Mining Transportation System Based on FTA-BN-PHA in the Context of Smart Mining Process," Mathematics, MDPI, vol. 12(7), pages 1-31, April.
    19. Men, Jinkun & Chen, Guohua & Yang, Yunfeng & Reniers, Genserik, 2022. "An event-driven probabilistic methodology for modeling the spatial-temporal evolution of natural hazard-induced domino chain in chemical industrial parks," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    20. Li, Weijun & Sun, Qiqi & Zhang, Jiwang & Zhang, Laibin, 2024. "Quantitative risk assessment of industrial hot work using Adaptive Bow Tie and Petri Nets," Reliability Engineering and System Safety, Elsevier, vol. 242(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:241:y:2024:i:c:s0951832023005513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.