Risk-informed based comprehensive path-planning method for radioactive materials road transportation
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2021.108228
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Huang, Wencheng & Zhang, Yue & Yu, Yaocheng & Xu, Yifei & Xu, Minhao & Zhang, Rui & De Dieu, Gatesi Jean & Yin, Dezhi & Liu, Zhanru, 2021. "Historical data-driven risk assessment of railway dangerous goods transportation system: Comparisons between Entropy Weight Method and Scatter Degree Method," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
- Zvyagina, Tatiana & Zvyagin, Petr, 2022. "A model of multi-objective route optimization for a vessel in drifting ice," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
- Izdebski, Mariusz & Jacyna-Gołda, Ilona & Gołda, Paweł, 2022. "Minimisation of the probability of serious road accidents in the transport of dangerous goods," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
- Christian, Robby & Kang, Hyun Gook, 2017. "Probabilistic risk assessment on maritime spent nuclear fuel transportation (Part II: Ship collision probability)," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 136-149.
- Hu, Yunwei & Parhizkar, Tarannom & Mosleh, Ali, 2022. "Guided simulation for dynamic probabilistic risk assessment of complex systems: Concept, method, and application," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
- Paolo Gardoni, 2017. "Risk and Reliability Analysis," Springer Series in Reliability Engineering, in: Paolo Gardoni (ed.), Risk and Reliability Analysis: Theory and Applications, pages 3-24, Springer.
- Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
- Gai, Wen-mei & Deng, Yun-feng & Jiang, Zhong-an & Li, Jing & Du, Yan, 2017. "Multi-objective evacuation routing optimization for toxic cloud releases," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 58-68.
- Huang, Wencheng & Zhang, Yue & Kou, Xingyi & Yin, Dezhi & Mi, Rongwei & Li, Linqing, 2020. "Railway dangerous goods transportation system risk analysis: An Interpretive Structural Modeling and Bayesian Network combining approach," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
- Huang, Wencheng & Zhang, Rui & Xu, Minhao & Yu, Yaocheng & Xu, Yifei & De Dieu, Gatesi Jean, 2020. "Risk state changes analysis of railway dangerous goods transportation system: Based on the cusp catastrophe model," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
- Decò, Alberto & Frangopol, Dan M., 2013. "Risk-informed optimal routing of ships considering different damage scenarios and operational conditions," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 126-140.
- Teichmann, Dusan & Dorda, Michal & Sousek, Radovan, 2021. "Creation of preventive mass evacuation plan with the use of public transport," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
- Huang, Wencheng & Zhou, Bowen & Yu, Yaocheng & Yin, Dezhi, 2021. "Vulnerability analysis of road network for dangerous goods transportation considering intentional attack: Based on Cellular Automata," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
- Xifei Huang & Xinhao Wang & Jingjing Pei & Ming Xu & Xiaowu Huang & Yun Luo, 2018. "Risk assessment of the areas along the highway due to hazardous material transportation accidents," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(3), pages 1181-1202, September.
- Mohaghegh, Zahra & Kazemi, Reza & Mosleh, Ali, 2009. "Incorporating organizational factors into Probabilistic Risk Assessment (PRA) of complex socio-technical systems: A hybrid technique formalization," Reliability Engineering and System Safety, Elsevier, vol. 94(5), pages 1000-1018.
- Liu, Jianqiao & Zou, Yanhua & Wang, Wei & Zhang, Li & Liu, Xueyang & Ding, Qianqiao & Qin, Zhuomin & ÄŒepin, Marko, 2021. "Analysis of dependencies among performance shaping factors in human reliability analysis based on a system dynamics approach," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
- Seo, Seung-Kwon & Yoon, Young-Gak & Lee, Ju-sung & Na, Jonggeol & Lee, Chul-Jin, 2022. "Deep Neural Network-based Optimization Framework for Safety Evacuation Route during Toxic Gas Leak Incidents," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
- Aven, Terje & Kristensen, Vidar, 2019. "How the distinction between general knowledge and specific knowledge can improve the foundation and practice of risk assessment and risk-informed decision-making," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
- Hosseini, S. Davod & Verma, Manish, 2018. "Conditional value-at-risk (CVaR) methodology to optimal train configuration and routing of rail hazmat shipments," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 79-103.
- Ditta, A. & Figueroa, O. & Galindo, G. & Yie-Pinedo, R., 2019. "A review on research in transportation of hazardous materials," Socio-Economic Planning Sciences, Elsevier, vol. 68(C).
- Nijole Batarliene, 2020. "Essential Safety Factors for the Transport of Dangerous Goods by Road: A Case Study of Lithuania," Sustainability, MDPI, vol. 12(12), pages 1-16, June.
- Christian, Robby & Kang, Hyun Gook, 2017. "Probabilistic risk assessment on maritime spent nuclear fuel transportation—Part I: Transport cask damage probability," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 124-135.
- Chen, Yuh-Wen & Wang, Chi-Hwang & Lin, Sain-Ju, 2008. "A multi-objective geographic information system for route selection of nuclear waste transport," Omega, Elsevier, vol. 36(3), pages 363-372, June.
- Huang, Wencheng & Li, Linqing & Liu, Hongyi & Zhang, Rui & Xu, Minhao, 2021. "Defense resource allocation in road dangerous goods transportation network: A Self-Contained Girvan-Newman Algorithm and Mean Variance Model combined approach," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
- Darvishan, Ayda & Lim, Gino J., 2021. "Dynamic network flow optimization for real-time evacuation reroute planning under multiple road disruptions," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
- Noguchi, H. & Hienuki, S. & Fuse, M., 2020. "Network theory-based accident scenario analysis for hazardous material transport: A case study of liquefied petroleum gas transport in japan," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Li, Guoqi & Pu, Gang & Yang, Jiaxin & Jiang, Xinguo, 2024. "A multidimensional quantitative risk assessment framework for dense areas of stay points for urban HazMat vehicles," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
- Wang, Jinpei & Bai, Xuejie & Liu, Yankui, 2023. "Globalized robust bilevel optimization model for hazmat transport network design considering reliability," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
- Tao, Longlong & Chen, Liwei & Ge, Daochuan & Yao, Yuantao & Ruan, Fang & Wu, Jie & Yu, Jie, 2022. "An integrated probabilistic risk assessment methodology for maritime transportation of spent nuclear fuel based on event tree and hydrodynamic model," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Izdebski, Mariusz & Jacyna-Gołda, Ilona & Gołda, Paweł, 2022. "Minimisation of the probability of serious road accidents in the transport of dangerous goods," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
- Liu, Zhichen & Li, Ying & Zhang, Zhaoyi & Yu, Wenbo, 2022. "A new evacuation accessibility analysis approach based on spatial information," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
- Tao, Longlong & Chen, Liwei & Ge, Daochuan & Yao, Yuantao & Ruan, Fang & Wu, Jie & Yu, Jie, 2022. "An integrated probabilistic risk assessment methodology for maritime transportation of spent nuclear fuel based on event tree and hydrodynamic model," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
- Laihao Ma & Xiaoxue Ma & Jingwen Zhang & Qing Yang & Kai Wei, 2021. "Identifying the Weaker Function Links in the Hazardous Chemicals Road Transportation System in China," IJERPH, MDPI, vol. 18(13), pages 1-17, July.
- Guo, Jian & Ma, Kaijiang, 2024. "Risk analysis for hazardous chemical vehicle-bridge transportation system: A dynamic Bayesian network model incorporating vehicle dynamics," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
- Li, Guoqi & Pu, Gang & Yang, Jiaxin & Jiang, Xinguo, 2024. "A multidimensional quantitative risk assessment framework for dense areas of stay points for urban HazMat vehicles," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
- Kim, Gibeom & Heo, Gyunyoung, 2023. "Agent-based radiological emergency evacuation simulation modeling considering mitigation infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
- Liu, Qiang & Tang, Aiping & Huang, Delong & Huang, Ziyuan & Zhang, Bin & Xu, Xiuchen, 2022. "Total probabilistic measure for the potential risk of regional roads exposed to landslides," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
- Wang, Jinpei & Bai, Xuejie & Liu, Yankui, 2023. "Globalized robust bilevel optimization model for hazmat transport network design considering reliability," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
- Gu, Shuang & Li, Keping & Feng, Tao & Yan, Dongyang & Liu, Yanyan, 2022. "The prediction of potential risk path in railway traffic events," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
- Chen, Dingjun & Fang, Xufeng & Li, Yao & Ni, Shaoquan & Zhang, Qingpeng & Sang, Chin Kwai, 2022. "Three-level multimodal transportation network for cross-regional emergency resources dispatch under demand and route reliability," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
- Liu, Enze & Barker, Kash & Chen, Hong, 2022. "A multi-modal evacuation-based response strategy for mitigating disruption in an intercity railway system," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
- Rungskunroch, Panrawee & Jack, Anson & Kaewunruen, Sakdirat, 2021. "Benchmarking on railway safety performance using Bayesian inference, decision tree and petri-net techniques based on long-term accidental data sets," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
- Tibor Sipos & Zsombor Szabó & Mohammed Obaid & Árpád Török, 2023. "Disaster Risk Assessment Scheme—A Road System Survey for Budapest," Sustainability, MDPI, vol. 15(8), pages 1-18, April.
- Huang, Wencheng & Yin, Dezhi & Xu, Yifei & Zhang, Rui & Xu, Minhao, 2022. "Using N-K Model to quantitatively calculate the variability in Functional Resonance Analysis Method," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
- Monfared, M.A.S. & Rezazadeh, Masoumeh & Alipour, Zohreh, 2022. "Road networks reliability estimations and optimizations: A Bi-directional bottom-up, top-down approach," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
- Khakzad, Nima, 2023. "A methodology based on Dijkstra's algorithm and mathematical programming for optimal evacuation in process plants in the event of major tank fires," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
- Guo, Jian & Luo, Cheng & Ma, Kaijiang, 2023. "Risk coupling analysis of road transportation accidents of hazardous materials in complicated maritime environment," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
- Feng, Jian Rui & Zhao, Meng-ke & Lu, Shou-xiang, 2024. "Accident spread and risk propagation mechanism in complex industrial system network," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
- Feng, Jian Rui & Yu, Guanghui & Zhao, Mengke & Zhang, Jiaqing & Lu, Shouxiang, 2022. "Dynamic risk assessment framework for industrial systems based on accidents chain theory: The case study of fire and explosion risk of UHV converter transformer," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
More about this item
Keywords
Radioactive materials transportation; Route optimization; Path-planning; Risk-informed; Probabilistic risk assessment; Gray relation analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:219:y:2022:i:c:s0951832021007067. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.