IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v190y2024ics0191261524002029.html
   My bibliography  Save this article

The multi-compartment truck and trailer petrol station replenishment problem with domino hazard risks

Author

Listed:
  • Wu, Weitiao
  • Li, Yu

Abstract

Petroleum is the foundation of the oil industry and many transportation systems. As a typical hazardous material, transportation of petroleum products by road trucks will create an explosion risk and pose a potential threat to safety. The petrol distribution system with economic viability and safety calls for a well-designed distribution network and effective transportation management. In this paper, we introduce a new multi-compartment truck and trailer petrol station replenishment problem with domino hazard risks, a topic of great practical significance but with limited research attention. The problem jointly optimizes truck routing-scheduling, trailer routing-scheduling, and inventory decisions for oil depots and petrol stations. The evaporation effects of petrol during the transportation, transfer, and inventory process are explicitly considered. Multi-source data are acquired to construct the weighted social factor, including population density, GDP output intensity, POI density, and travel intensity. The comprehensive risk assessment model tailored with the domino effect and social factor is applied to quantitatively measure the risks associated with storage and transportation processes. To tackle this complex non-convex multi-objective problem, we propose a problem decomposition strategy that decomposes the original master problem into two subproblems. A customized multi-objective adaptive large neighborhood search algorithm, combining the benefits of multi-objective random variable neighborhood descent search procedure, archived multi-objective simulated annealing, and hypercube-based selection mechanism, is developed to solve the trailer-related subproblem. For the truck-related subproblem, a first-in-first-out heuristic and a linear relaxation method combined with valid inequalities are employed to rapidly compute the upper and lower bounds. This integrated matheuristic framework effectively coordinates the solutions of the two subproblems. Our model is applied to a metropolitan-wide real-world case study in Guangzhou, China. The results highlight a trade-off between distribution cost minimization and social risk minimization. The detachable mode for trucks and trailers reduces transportation costs, particularly as the distribution network expands. The compartment structure of the trailer greatly affects the efficiency of the distribution network.

Suggested Citation

  • Wu, Weitiao & Li, Yu, 2024. "The multi-compartment truck and trailer petrol station replenishment problem with domino hazard risks," Transportation Research Part B: Methodological, Elsevier, vol. 190(C).
  • Handle: RePEc:eee:transb:v:190:y:2024:i:c:s0191261524002029
    DOI: 10.1016/j.trb.2024.103078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261524002029
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2024.103078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bani, Abderrahman & El Hallaoui, Issmail & Corréa, Ayoub Insa & Tahir, Adil, 2023. "Solving a real-world multi-depot multi-period petrol replenishment problem with complex loading constraints," European Journal of Operational Research, Elsevier, vol. 311(1), pages 154-172.
    2. Mahmutoğulları, Özlem & Yaman, Hande, 2024. "Mathematical formulations for the multi-period alternative fuel refueling station location problem with routing under decision-dependent flow dynamics," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    3. Romero, Natalia & Nozick, Linda K. & Xu, Ningxiong, 2016. "Hazmat facility location and routing analysis with explicit consideration of equity using the Gini coefficient," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 89(C), pages 165-181.
    4. Ghiami, Yousef & Demir, Emrah & Van Woensel, Tom & Christiansen, Marielle & Laporte, Gilbert, 2019. "A deteriorating inventory routing problem for an inland liquefied natural gas distribution network," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 45-67.
    5. Zhang, Meng & Wang, Nengmin & He, Zhengwen & Jiang, Bin, 2021. "Vehicle routing optimization for hazmat shipments considering catastrophe avoidance and failed edges," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    6. Villegas, Juan G. & Prins, Christian & Prodhon, Caroline & Medaglia, Andrés L. & Velasco, Nubia, 2013. "A matheuristic for the truck and trailer routing problem," European Journal of Operational Research, Elsevier, vol. 230(2), pages 231-244.
    7. Mohri, Seyed Sina & Asgari, Nasrin & Zanjirani Farahani, Reza & Bourlakis, Michael & Laker, Benjamin, 2020. "Fairness in hazmat routing-scheduling: A bi-objective Stackelberg game," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    8. Coelho, Leandro C. & Laporte, Gilbert, 2015. "Classification, models and exact algorithms for multi-compartment delivery problems," European Journal of Operational Research, Elsevier, vol. 242(3), pages 854-864.
    9. Xu, Xiaofeng & Wang, Chenglong & Zhou, Peng, 2021. "GVRP considered oil-gas recovery in refined oil distribution: From an environmental perspective," International Journal of Production Economics, Elsevier, vol. 235(C).
    10. Barth, Matthew & Younglove, Theodore & Scora, George, 2005. "Development of a Heavy-Duty Diesel Modal Emissions and Fuel Consumption Model," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt67f0v3zf, Institute of Transportation Studies, UC Berkeley.
    11. Esfandeh, Tolou & Kwon, Changhyun & Batta, Rajan, 2016. "Regulating hazardous materials transportation by dual toll pricing," Transportation Research Part B: Methodological, Elsevier, vol. 83(C), pages 20-35.
    12. Yan Cheng Hsu & Jose L. Walteros & Rajan Batta, 2020. "Solving the petroleum replenishment and routing problem with variable demands and time windows," Annals of Operations Research, Springer, vol. 294(1), pages 9-46, November.
    13. Wu, Weitiao & Ma, Jian & Liu, Ronghui & Jin, Wenzhou, 2022. "Multi-class hazmat distribution network design with inventory and superimposed risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    14. Walter J. Bell & Louis M. Dalberto & Marshall L. Fisher & Arnold J. Greenfield & R. Jaikumar & Pradeep Kedia & Robert G. Mack & Paul J. Prutzman, 1983. "Improving the Distribution of Industrial Gases with an On-Line Computerized Routing and Scheduling Optimizer," Interfaces, INFORMS, vol. 13(6), pages 4-23, December.
    15. Alfandari, Laurent & Ljubić, Ivana & De Melo da Silva, Marcos, 2022. "A tailored Benders decomposition approach for last-mile delivery with autonomous robots," European Journal of Operational Research, Elsevier, vol. 299(2), pages 510-525.
    16. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    17. Sun, Lijun & Zhang, Yuankai & Hu, Xiangpei, 2021. "Economical-traveling-distance-based fleet composition with fuel costs: An application in petrol distribution," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    18. José Manuel Belenguer & Enrique Benavent & Antonio Martínez & Christian Prins & Caroline Prodhon & Juan G. Villegas, 2016. "A Branch-and-Cut Algorithm for the Single Truck and Trailer Routing Problem with Satellite Depots," Transportation Science, INFORMS, vol. 50(2), pages 735-749, May.
    19. Zheng, Xiaojin & Yin, Meixia & Zhang, Yanxia, 2019. "Integrated optimization of location, inventory and routing in supply chain network design," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 1-20.
    20. Vidović, Milorad & Popović, Dražen & Ratković, Branislava, 2014. "Mixed integer and heuristics model for the inventory routing problem in fuel delivery," International Journal of Production Economics, Elsevier, vol. 147(PC), pages 593-604.
    21. Bertazzi, Luca & Laganà, Demetrio & Ohlmann, Jeffrey W. & Paradiso, Rosario, 2020. "An exact approach for cyclic inbound inventory routing in a level production system," European Journal of Operational Research, Elsevier, vol. 283(3), pages 915-928.
    22. Cornillier, Fabien & Boctor, Fayez & Renaud, Jacques, 2012. "Heuristics for the multi-depot petrol station replenishment problem with time windows," European Journal of Operational Research, Elsevier, vol. 220(2), pages 361-369.
    23. Tavana, Madjid & Abtahi, Amir-Reza & Di Caprio, Debora & Hashemi, Reza & Yousefi-Zenouz, Reza, 2018. "An integrated location-inventory-routing humanitarian supply chain network with pre- and post-disaster management considerations," Socio-Economic Planning Sciences, Elsevier, vol. 64(C), pages 21-37.
    24. Hosseini, S. Davod & Verma, Manish, 2018. "Conditional value-at-risk (CVaR) methodology to optimal train configuration and routing of rail hazmat shipments," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 79-103.
    25. Ann-Kathrin Rothenbächer & Michael Drexl & Stefan Irnich, 2018. "Branch-and-Price-and-Cut for the Truck-and-Trailer Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 52(5), pages 1174-1190, October.
    26. Hu, Weihong & Toriello, Alejandro & Dessouky, Maged, 2018. "Integrated inventory routing and freight consolidation for perishable goods," European Journal of Operational Research, Elsevier, vol. 271(2), pages 548-560.
    27. Wang, Yong & Peng, Shouguo & Zhou, Xuesong & Mahmoudi, Monirehalsadat & Zhen, Lu, 2020. "Green logistics location-routing problem with eco-packages," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    28. Regnier-Coudert, Olivier & McCall, John & Ayodele, Mayowa & Anderson, Steven, 2016. "Truck and trailer scheduling in a real world, dynamic and heterogeneous context," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 389-408.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Weitiao & Li, Yu, 2024. "Pareto truck fleet sizing for bike relocation with stochastic demand: Risk-averse multi-stage approximate stochastic programming," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    2. Wu, Weitiao & Ma, Jian & Liu, Ronghui & Jin, Wenzhou, 2022. "Multi-class hazmat distribution network design with inventory and superimposed risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    3. Gu, Wenjuan & Archetti, Claudia & Cattaruzza, Diego & Ogier, Maxime & Semet, Frédéric & Speranza, M. Grazia, 2024. "Vehicle routing problems with multiple commodities: A survey," European Journal of Operational Research, Elsevier, vol. 317(1), pages 1-15.
    4. Ostermeier, Manuel & Henke, Tino & Hübner, Alexander & Wäscher, Gerhard, 2021. "Multi-compartment vehicle routing problems: State-of-the-art, modeling framework and future directions," European Journal of Operational Research, Elsevier, vol. 292(3), pages 799-817.
    5. Mohri, Seyed Sina & Mohammadi, Mehrdad & Gendreau, Michel & Pirayesh, Amir & Ghasemaghaei, Ali & Salehi, Vahid, 2022. "Hazardous material transportation problems: A comprehensive overview of models and solution approaches," European Journal of Operational Research, Elsevier, vol. 302(1), pages 1-38.
    6. Li, Hongqi & Wang, Haotian & Chen, Jun & Bai, Ming, 2020. "Two-echelon vehicle routing problem with time windows and mobile satellites," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 179-201.
    7. Bootaki, Behrang & Zhang, Guoqing, 2024. "A location-production-routing problem for distributed manufacturing platforms: A neural genetic algorithm solution methodology," International Journal of Production Economics, Elsevier, vol. 275(C).
    8. Michael Drexl, 2018. "On the One-to-One Pickup-and-Delivery Problem with Time Windows and Trailers," Working Papers 1816, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.
    9. Chen, Cheng & Demir, Emrah & Huang, Yuan & Qiu, Rongzu, 2021. "The adoption of self-driving delivery robots in last mile logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    10. Aziez, Imadeddine & Côté, Jean-François & Coelho, Leandro C., 2022. "Fleet sizing and routing of healthcare automated guided vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    11. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    12. Maximilian Schiffer & Michael Schneider & Grit Walther & Gilbert Laporte, 2019. "Vehicle Routing and Location Routing with Intermediate Stops: A Review," Transportation Science, INFORMS, vol. 53(2), pages 319-343, March.
    13. Fontaine, Pirmin & Crainic, Teodor Gabriel & Gendreau, Michel & Minner, Stefan, 2020. "Population-based risk equilibration for the multimode hazmat transport network design problem," European Journal of Operational Research, Elsevier, vol. 284(1), pages 188-200.
    14. Michael Drexl, 2021. "On the one-to-one pickup-and-delivery problem with time windows and trailers," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(3), pages 1115-1162, September.
    15. Wang, Qingyi & Nie, Xiaofeng, 2023. "A location-inventory-routing model for distributing emergency supplies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    16. Lahyani, Rahma & Khemakhem, Mahdi & Semet, Frédéric, 2015. "Rich vehicle routing problems: From a taxonomy to a definition," European Journal of Operational Research, Elsevier, vol. 241(1), pages 1-14.
    17. Martins, Sara & Ostermeier, Manuel & Amorim, Pedro & Hübner, Alexander & Almada-Lobo, Bernardo, 2019. "Product-oriented time window assignment for a multi-compartment vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 276(3), pages 893-909.
    18. Ann-Kathrin Rothenbächer & Michael Drexl & Stefan Irnich, 2018. "Branch-and-Price-and-Cut for the Truck-and-Trailer Routing Problem with Time Windows," Transportation Science, INFORMS, vol. 52(5), pages 1174-1190, October.
    19. Bani, Abderrahman & El Hallaoui, Issmail & Corréa, Ayoub Insa & Tahir, Adil, 2023. "Solving a real-world multi-depot multi-period petrol replenishment problem with complex loading constraints," European Journal of Operational Research, Elsevier, vol. 311(1), pages 154-172.
    20. Ohad Eisenhandler & Michal Tzur, 2019. "The Humanitarian Pickup and Distribution Problem," Operations Research, INFORMS, vol. 67(1), pages 10-32, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:190:y:2024:i:c:s0191261524002029. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.