IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v251y2024ics0951832024004101.html
   My bibliography  Save this article

Simulation-based personal fatality risk assessment due to the fragmentation hazard

Author

Listed:
  • Lin, Qindong
  • Zhu, Xinguang
  • Gan, Yundan
  • Feng, Chun
  • Jiao, Wenjun

Abstract

In the military and chemical industry, modeling the fragmentation hazard field is of great significance in conducting the fatality risk assessment and calculating the safety distance for person. Although the ballistic methodology achieves the simulation of fragmentation flight trajectory, the acquisition of accurate initial projection data of fragmentation is a challenge. By coupling continuum-discontinuum element method and particle discrete element method, the fragmentation power algorithm is established, which achieves the integrated simulation of the initial projection data of fragmentation and the flight process of fragmentation. First, continuum-discontinuum element method is adopted to simulate the detonation products-driven fragmentation acceleration process by introducing the explosive detonation model, which achieves the acquisition of initial projection data of fragmentation. Then, the particle discrete element method is adopted to simulate the flight trajectory and power data of fragmentation. Based on the numerical and experimental result, the accuracy of fragmentation power algorithm is verified. In conjunction with the personal vulnerability model, a systematic numerical simulation framework is established to conduct the simulation-based personal fatality risk assessment when the metal-cased munition detonates accidentally, and the results indicate that the personal fatality risk due to the fragmentation becomes severer with the increase of munition curvature.

Suggested Citation

  • Lin, Qindong & Zhu, Xinguang & Gan, Yundan & Feng, Chun & Jiao, Wenjun, 2024. "Simulation-based personal fatality risk assessment due to the fragmentation hazard," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004101
    DOI: 10.1016/j.ress.2024.110338
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024004101
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110338?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004101. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.