IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v205y2021ics0951832020307365.html
   My bibliography  Save this article

Historical data-driven risk assessment of railway dangerous goods transportation system: Comparisons between Entropy Weight Method and Scatter Degree Method

Author

Listed:
  • Huang, Wencheng
  • Zhang, Yue
  • Yu, Yaocheng
  • Xu, Yifei
  • Xu, Minhao
  • Zhang, Rui
  • De Dieu, Gatesi Jean
  • Yin, Dezhi
  • Liu, Zhanru

Abstract

In this paper, two historical data-driven weight calculation approaches including Entropy Weight Method (EWM) and Scatter Degree Method (SDM), are applied and compared to solve the risk assessment of railway dangerous goods transportation system (RDGTS). The risk is defined as product of occurrence probabilities and their corresponding weights, the occurrence probability and weight of each risk sub-indicator is obtained by using the historical statistical data as the inputs. EWM aims at reflecting relative intensities among the evaluation indicators, however, SDM reflects the projection factor that maximizes the overall difference among the evaluated objects. In order to compare the performance of EWM and SDM, the stability analysis is carried out, which focuses on studying and analyzing the reverse degree order of the weight value when the initial matrix changed. In addition, correlation coefficient between occurrence probability and final assessment results based on the two approaches are conducted. The results of case study by using China data show that: the SDM is more stable than EWM; sub-risk indicators with highest ranks belong to risk factors of Human category, which means the Human unsafe actions and behaviors are the most dangerous factors that influence the normal and safe operations of RDGTS.

Suggested Citation

  • Huang, Wencheng & Zhang, Yue & Yu, Yaocheng & Xu, Yifei & Xu, Minhao & Zhang, Rui & De Dieu, Gatesi Jean & Yin, Dezhi & Liu, Zhanru, 2021. "Historical data-driven risk assessment of railway dangerous goods transportation system: Comparisons between Entropy Weight Method and Scatter Degree Method," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
  • Handle: RePEc:eee:reensy:v:205:y:2021:i:c:s0951832020307365
    DOI: 10.1016/j.ress.2020.107236
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832020307365
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.107236?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Govindan, Kannan & Chaudhuri, Atanu, 2016. "Interrelationships of risks faced by third party logistics service providers: A DEMATEL based approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 90(C), pages 177-195.
    2. Sahin, Ismail, 1999. "Railway traffic control and train scheduling based oninter-train conflict management," Transportation Research Part B: Methodological, Elsevier, vol. 33(7), pages 511-534, September.
    3. Karel De Bakker & Albert Boonstra & Hans Wortmann, 2014. "The communicative effect of risk identification on project success," International Journal of Project Organisation and Management, Inderscience Enterprises Ltd, vol. 6(1/2), pages 138-156.
    4. Jagtman, H.M. & Hale, A.R. & Heijer, T., 2006. "Ex ante assessment of safety issues of new technologies in transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(6), pages 459-474, July.
    5. Peeters, J.F.W. & Basten, R.J.I. & Tinga, T., 2018. "Improving failure analysis efficiency by combining FTA and FMEA in a recursive manner," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 36-44.
    6. Godoy, S.M. & Santa Cruz, A.S.M. & Scenna, N.J., 2007. "STRRAP system—A software for hazardous materials risk assessment and safe distances calculation," Reliability Engineering and System Safety, Elsevier, vol. 92(7), pages 847-857.
    7. Huang, Wencheng & Shuai, Bin & Sun, Yan & Wang, Yang & Antwi, Eric, 2018. "Using entropy-TOPSIS method to evaluate urban rail transit system operation performance: The China case," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 292-303.
    8. Aven, Terje, 2016. "Risk assessment and risk management: Review of recent advances on their foundation," European Journal of Operational Research, Elsevier, vol. 253(1), pages 1-13.
    9. Jun Li & Hong Zhang & Yinshan Han & Baodong Wang, 2016. "Study on Failure of Third-Party Damage for Urban Gas Pipeline Based on Fuzzy Comprehensive Evaluation," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-15, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gu, Shuang & Li, Keping & Feng, Tao & Yan, Dongyang & Liu, Yanyan, 2022. "The prediction of potential risk path in railway traffic events," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    2. Haochun Yang & Yunyi Liang, 2023. "Examining the Connectivity between Urban Rail Transport and Regular Bus Transport," Sustainability, MDPI, vol. 15(9), pages 1-14, May.
    3. Li, Guoqi & Pu, Gang & Yang, Jiaxin & Jiang, Xinguo, 2024. "A multidimensional quantitative risk assessment framework for dense areas of stay points for urban HazMat vehicles," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    4. Tuo, Yunfei & Wang, Zhaoyi & Zheng, Yang & Shi, Xiaolan & Liu, Xiangning & Ding, Mingjing & Yang, Qiliang, 2023. "Effect of water and fertilizer regulation on the soil microbial biomass carbon and nitrogen, enzyme activity, and saponin content of Panax notoginseng," Agricultural Water Management, Elsevier, vol. 278(C).
    5. Huang, Wencheng & Zhang, Yue & Yin, Dezhi & Zuo, Borui & Liu, Zhanru, 2021. "Urban bus accident analysis: based on a Tropos Goal Risk-Accident Framework considering Learning From Incidents process," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Qiang He & Xin Deng & Chuan Li & Zhongcheng Yan & Yanbin Qi, 2021. "Do Internet Skills Increase Farmers’ Willingness to Participate in Environmental Governance? Evidence from Rural China," Agriculture, MDPI, vol. 11(12), pages 1-18, November.
    7. Nejad, Hamed S. & Parhizkar, Tarannom & Mosleh, Ali, 2022. "Automatic generation of event sequence diagrams for guiding simulation based dynamic probabilistic risk assessment (SIMPRA) of complex systems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    8. Zhao, Yu & Feng, Qi, 2024. "Identifying spatial and temporal dynamics and driving factors of cultivated land fragmentation in Shaanxi province," Agricultural Systems, Elsevier, vol. 217(C).
    9. Song, Dongran & Xu, Shanmin & Huang, Lingxiang & Xia, E. & Huang, Chaoneng & Yang, Jian & Hu, Yang & Fang, Fang, 2022. "Multi-site and multi-objective optimization for wind turbines based on the design of virtual representative wind farm," Energy, Elsevier, vol. 252(C).
    10. Izdebski, Mariusz & Jacyna-Gołda, Ilona & Gołda, Paweł, 2022. "Minimisation of the probability of serious road accidents in the transport of dangerous goods," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    11. Huang, Wencheng & Yin, Dezhi & Xu, Yifei & Zhang, Rui & Xu, Minhao, 2022. "Using N-K Model to quantitatively calculate the variability in Functional Resonance Analysis Method," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    12. Xiaojuan Li & Chen Wang & Mukhtar A. Kassem & Hamed H. Alhajlah & Samuel Bimenyimana, 2022. "Evaluation Method for Quality Risks of Safety in Prefabricated Building Construction Using SEM–SDM Approach," IJERPH, MDPI, vol. 19(9), pages 1-17, April.
    13. Shen, Jingwei & Zong, Huiming, 2023. "Identification of critical transportation cities in the multimodal transportation network of China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 628(C).
    14. Da Huang & Mei Han, 2021. "Research on Evaluation Method of Freight Transportation Environmental Sustainability," Sustainability, MDPI, vol. 13(5), pages 1-13, March.
    15. Wen Cao & Lin Yang & Qinyi Zhang & Lihua Chen & Weidong Wu, 2021. "Evaluation of Rural Dwellings’ Energy-Saving Retrofit with Adaptive Thermal Comfort Theory," Sustainability, MDPI, vol. 13(10), pages 1-25, May.
    16. Tao, Longlong & Wu, Jie & Ge, Daochuan & Chen, Liwei & Sun, Ming, 2022. "Risk-informed based comprehensive path-planning method for radioactive materials road transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    17. Rungskunroch, Panrawee & Jack, Anson & Kaewunruen, Sakdirat, 2021. "Benchmarking on railway safety performance using Bayesian inference, decision tree and petri-net techniques based on long-term accidental data sets," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    18. Zhang, Jiaan & Liu, Dong & Li, Zhijun & Han, Xu & Liu, Hui & Dong, Cun & Wang, Junyan & Liu, Chenyu & Xia, Yunpeng, 2021. "Power prediction of a wind farm cluster based on spatiotemporal correlations," Applied Energy, Elsevier, vol. 302(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wencheng Huang & Yueyang Li & Xingyi Kou & Wenzhe Wang & Yifei Xu, 2021. "Using a FMEA–TIFIAD Approach to Identify the Risk of Railway Dangerous Goods Transportation System," Group Decision and Negotiation, Springer, vol. 30(1), pages 63-95, February.
    2. Divya Choudhary & Ravi Shankar & Alok Choudhary, 2020. "An Integrated Approach for Modeling Sustainability Risks in Freight Transportation Systems," Risk Analysis, John Wiley & Sons, vol. 40(4), pages 858-883, April.
    3. repec:iim:iimawp:12906 is not listed on IDEAS
    4. Tim Gruchmann & Nadine Pratt & Jan Eiten & Ani Melkonyan, 2020. "4PL Digital Business Models in Sea Freight Logistics: The Case of FreightHub," Logistics, MDPI, vol. 4(2), pages 1-14, May.
    5. Aven, Terje & Renn, Ortwin, 2018. "Improving government policy on risk: Eight key principles," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 230-241.
    6. Seo, Seung-Kwon & Yoon, Young-Gak & Lee, Ju-sung & Na, Jonggeol & Lee, Chul-Jin, 2022. "Deep Neural Network-based Optimization Framework for Safety Evacuation Route during Toxic Gas Leak Incidents," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    7. Zhou, Jing & Liu, Yu & Liang, Decui & Tang, Maochun, 2023. "A new risk analysis approach to seek best production action during new product introduction," International Journal of Production Economics, Elsevier, vol. 262(C).
    8. Xiaodong Yuan & Weiling Song, 2022. "Evaluating technology innovation capabilities of companies based on entropy- TOPSIS: the case of solar cell companies," Information Technology and Management, Springer, vol. 23(2), pages 65-76, June.
    9. Xiang-Fei Ma & Ru Zhang & Yi-Fan Ruan, 2023. "How to Evaluate the Level of Green Development Based on Entropy Weight TOPSIS: Evidence from China," IJERPH, MDPI, vol. 20(3), pages 1-15, January.
    10. Hu, Dingding & Zhou, Kaile & Li, Fangyi & Ma, Dawei, 2022. "Electric vehicle user classification and value discovery based on charging big data," Energy, Elsevier, vol. 249(C).
    11. Junwei Gan & Li Luo, 2017. "Using DEMATEL and Intuitionistic Fuzzy Sets to Identify Critical Factors Influencing the Recycling Rate of End-Of-Life Vehicles in China," Sustainability, MDPI, vol. 9(10), pages 1-22, October.
    12. repec:arp:tjssrr:2019:p:69-75 is not listed on IDEAS
    13. Li Yang & Yue Xu & Junqi Zhu & Keyu Sun, 2024. "Research on Water Ecological Resilience Measurement and Influencing Factors: A Case Study of the Yangtze River Economic Belt, China," Sustainability, MDPI, vol. 16(16), pages 1-23, August.
    14. Mussard, Stéphane & Pi Alperin, María Noel, 2021. "Accounting for risk factors on health outcomes: The case of Luxembourg," European Journal of Operational Research, Elsevier, vol. 291(3), pages 1180-1197.
    15. Shen, Bin & Xu, Xiaoyan & Guo, Shu, 2019. "The impacts of logistics services on short life cycle products in a global supply chain," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 131(C), pages 153-167.
    16. Pani, Agnivesh & Mishra, Sabya & Sahu, Prasanta, 2022. "Developing multi-vehicle freight trip generation models quantifying the relationship between logistics outsourcing and insourcing decisions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    17. Zio, E., 2018. "The future of risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 176-190.
    18. Tasneem Bani-Mustafa & Nicola Pedroni & Enrico Zio & Dominique Vasseur & Francois Beaudouin, 2020. "A hierarchical tree-based decision-making approach for assessing the relative trustworthiness of risk assessment models," Journal of Risk and Reliability, , vol. 234(6), pages 748-763, December.
    19. Heiner Ackermann & Erik Diessel & Michael Helmling & Neil Jami & Johanna Münch, 2024. "Computing Optimal Mitigation Plans for Force-Majeure Scenarios in Dynamic Manufacturing Chains," SN Operations Research Forum, Springer, vol. 5(2), pages 1-35, June.
    20. Huibing Cheng & Shanshui Zheng & Jianghong Feng, 2022. "A Fuzzy Multi-Criteria Method for Sustainable Ferry Operator Selection: A Case Study," Sustainability, MDPI, vol. 14(10), pages 1-22, May.
    21. Lo, Huai-Wei & Liou, James J.H. & Huang, Chun-Nen & Chuang, Yen-Ching & Tzeng, Gwo-Hshiung, 2020. "A new soft computing approach for analyzing the influential relationships of critical infrastructures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 28(C).
    22. Aigner, Philipp & Schlütter, Sebastian, 2023. "Enhancing gradient capital allocation with orthogonal convexity scenarios," ICIR Working Paper Series 47/23, Goethe University Frankfurt, International Center for Insurance Regulation (ICIR).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:205:y:2021:i:c:s0951832020307365. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.