IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v229y2023ics0951832022005099.html
   My bibliography  Save this article

Identification of failure modes and paths of reservoir dams under explosion loads

Author

Listed:
  • Li, Bo
  • Zhang, Qiling
  • Yang, Shengmei
  • Tian, Yaling
  • Li, Zhi

Abstract

Reservoir dams are large public facilities at risk of being damaged by explosion loads. Explosion accidents may not only affect people's life safety but also lead to property loss and ecological environment damage. This paper presents a method for identifying failure modes and paths of reservoir dams under explosion loads. First, the anti-explosion and failure characteristics of earth-rock dams, concrete gravity dams and concrete arch dams are analyzed through numerical simulations. Second, the failure modes and paths of different dams under explosion loads are given according to simulation results and actual structures of the dam and outbuildings. Finally, an identification method of main failure modes and paths of reservoir dams under explosion loads using the fuzzy analytic hierarchy process (FAHP) is further proposed by constructing the failure hierarchy structures. The case study results show that the proposed method can identify the major failure modes and paths of reservoir dams under explosion loads. This method can provide scientific basis and technical support for the risk analysis and safety protection of reservoir dams under explosion loads.

Suggested Citation

  • Li, Bo & Zhang, Qiling & Yang, Shengmei & Tian, Yaling & Li, Zhi, 2023. "Identification of failure modes and paths of reservoir dams under explosion loads," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
  • Handle: RePEc:eee:reensy:v:229:y:2023:i:c:s0951832022005099
    DOI: 10.1016/j.ress.2022.108892
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022005099
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108892?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lin, Song-Shun & Shen, Shui-Long & Zhou, Annan & Xu, Ye-Shuang, 2021. "Novel model for risk identification during karst excavation," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    2. Marks, Nicholas A & Stewart, Mark G. & Netherton, Michael D. & Stirling, Chris G., 2021. "Airblast variability and fatality risks from a VBIED in a complex urban environment," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    3. Abrahamsen, Eirik Bjorheim & Milazzo, Maria Francesca & Selvik, Jon T. & Asche, Frank & Abrahamsen, HÃ¥kon Bjorheim, 2020. "Prioritising investments in safety measures in the chemical industry by using the Analytic Hierarchy Process," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    4. Kishore, Katchalla Bala & Gangolu, Jaswanth & Ramancha, Mukesh K. & Bhuyan, Kasturi & Sharma, Hrishikesh, 2022. "Performance-based probabilistic deflection capacity models and fragility estimation for reinforced concrete column and beam subjected to blast loading," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    5. Delenne, C. & Cappelaere, B. & Guinot, V., 2012. "Uncertainty analysis of river flooding and dam failure risks using local sensitivity computations," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 171-183.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tian, Yuxuan & Guan, Xiaoshu & Sun, Huabin & Bao, Yuequan, 2024. "An adaptive structural dominant failure modes searching method based on graph neural network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Rose, Rodrigo L. & Mugi, Sohan R. & Saleh, Joseph Homer, 2023. "Accident investigation and lessons not learned: AcciMap analysis of successive tailings dam collapses in Brazil," Reliability Engineering and System Safety, Elsevier, vol. 236(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lingyun, Guo & Markus, Niffenegger & Jing, Zhou, 2022. "A novel procedure to evaluate the performance of failure assessment models," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    2. Si, Doudou & Pan, Zuanfeng & Zhang, Haipeng, 2024. "Probabilistic assessment and expression of load factor design model for explosive blast loading," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    3. Kishore, Katchalla Bala & Gangolu, Jaswanth & Ramancha, Mukesh K. & Bhuyan, Kasturi & Sharma, Hrishikesh, 2022. "Performance-based probabilistic deflection capacity models and fragility estimation for reinforced concrete column and beam subjected to blast loading," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    4. Yanlong Guo & Xuan Li & Denghang Chen & Han Zhang, 2022. "Evaluation Study on the Use of Non-Contact Prevention and Protection Products in the Context of COVID-19: A Comprehensive Evaluation Method from AHP and Entropy Weight Method," IJERPH, MDPI, vol. 19(24), pages 1-17, December.
    5. Gong, Yu & Liu, Pan & Zhang, Jun & Liu, Dedi & Zhang, Xiaoqi & Zhang, Xiaojing, 2020. "Considering different streamflow forecast horizons in the quantitative flood risk analysis for a multi-reservoir system," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    6. Li, Qilin & Wang, Yang & Chen, Wensu & Li, Ling & Hao, Hong, 2024. "Machine learning prediction of BLEVE loading with graph neural networks," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    7. Zheng, Zhi & Tian, Aonan & Pan, Xiaolan & Ji, Duofa & Wang, Yong, 2024. "The damage-based fragility analysis and probabilistic safety assessment of containment under internal pressure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    8. Shen, Shui-Long & Lin, Song-Shun & Zhou, Annan, 2023. "A cloud model-based approach for risk analysis of excavation system," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    9. Jūratė Kriaučiūnienė & Diana Šarauskienė, 2024. "Uncertainty Estimation in the Modeling of a Flood Wave Caused by a Dam Failure in a Hydropower System with Pumped Hydro Energy Storage," Sustainability, MDPI, vol. 16(9), pages 1-17, April.
    10. Yuanmin Wang & Mingkang Yuan & Xiaofeng Zhou & Xiaobing Qu, 2023. "Evaluation of Geo-Environment Carrying Capacity Based on Intuitionistic Fuzzy TOPSIS Method: A Case Study of China," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
    11. Nguyen, Hoang & Bui, Xuan-Nam & Topal, Erkan, 2023. "Reliability and availability artificial intelligence models for predicting blast-induced ground vibration intensity in open-pit mines to ensure the safety of the surroundings," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    12. Wu, Jiansong & Zhang, Linlin & Bai, Yiping & Reniers, Genserik, 2022. "A safety investment optimization model for power grid enterprises based on System Dynamics and Bayesian network theory," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    13. Wu, Jiawei & Wan, Liangqi, 2024. "Reliability sensitivity analysis for RBSMC: A high-efficiency multiple response Gaussian process model," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    14. Kapoor, Medha & Christensen, Christian Overgaard & Schmidt, Jacob Wittrup & Sørensen, John Dalsgaard & Thöns, Sebastian, 2023. "Decision analytic approach for the reclassification of concrete bridges by using elastic limit information from proof loading," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    15. Bhuyan, Kasturi & Sharma, Hrishikesh, 2022. "Reliability analysis & performance-based code calibration for slabs/walls of protective structures subject to air blast loading," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    16. Fluixá-Sanmartín, Javier & Escuder-Bueno, Ignacio & Morales-Torres, Adrián & Castillo-Rodríguez, Jesica Tamara, 2020. "Comprehensive decision-making approach for managing time dependent dam risks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    17. Ziemba, Paweł, 2022. "Uncertain Multi-Criteria analysis of offshore wind farms projects investments – Case study of the Polish Economic Zone of the Baltic Sea," Applied Energy, Elsevier, vol. 309(C).
    18. Rose, Rodrigo L. & Mugi, Sohan R. & Saleh, Joseph Homer, 2023. "Accident investigation and lessons not learned: AcciMap analysis of successive tailings dam collapses in Brazil," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    19. Bhuyan, Kasturi & Sharma, Hrishikesh, 2024. "Probabilistic capacity models and fragility estimate for NRC and UHSC panels subjected to contact blast," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    20. Nofal, Omar M. & van de Lindt, John W. & Do, Trung Q., 2020. "Multi-variate and single-variable flood fragility and loss approaches for buildings," Reliability Engineering and System Safety, Elsevier, vol. 202(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:229:y:2023:i:c:s0951832022005099. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.