IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v253y2025ics0951832024006021.html
   My bibliography  Save this article

Increasing the available water diversion volume of water source project through flood resource utilization: A case study of the middle route of the South-to-North water diversion project in China

Author

Listed:
  • Zhang, Xiaoqi
  • Yang, Han
  • Xu, Jijun
  • Wang, Yongqiang
  • Liu, Pan
  • Xu, Chong-Yu

Abstract

Water supply operating rules are critical for guaranteeing the safety of the water supply in the source project and receiving areas and overcoming the uneven distribution of water resources among different regions. Previous studies have mainly focused on optimizing the water supply operating rules to balance multiple benefits under the current engineering design parameters. In this study, a framework is proposed in which the water supply operating rules for the resource reservoir are adapted through flood resource utilization. The correlations among seasonal floods are first analyzed by considering the influence of water diversion projects. The seasonal flood-limited water levels (FLWLs) are then re-designed in terms of a flood damage assessment index under the deduced most-probable seasonal floods. Finally, the water supply operating curves of the resource reservoir are optimized by adopting the recommended seasonal FLWLs. The middle route of the South-to-North Water Diversion Project in China is taken as a case study. The results show that the recommended seasonal FLWLs are 160.2 m in summer and 164.2 m in autumn, and that the annual average available water diversion volume can be increased by 0.52 billion m3 without increasing the flood risk. Compared with the current water supply operating rules, the optimal operating curves make the annual distribution of the available water diversion volume more uniform in different typical-year scenarios and reduce the surplus reservoir water. These findings are helpful for exploring the potential of water resource utilization.

Suggested Citation

  • Zhang, Xiaoqi & Yang, Han & Xu, Jijun & Wang, Yongqiang & Liu, Pan & Xu, Chong-Yu, 2025. "Increasing the available water diversion volume of water source project through flood resource utilization: A case study of the middle route of the South-to-North water diversion project in China," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006021
    DOI: 10.1016/j.ress.2024.110530
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024006021
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110530?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yanbin Li & Yubo Li & Kai Feng & Kaiyuan Tian & Tongxuan Huang, 2023. "Dynamic Control of Flood Limited Water Levels for Parallel Reservoirs by Considering Forecast Period Uncertainty," Sustainability, MDPI, vol. 15(24), pages 1-22, December.
    2. Bucar, Raif C.B. & Hayeri, Yeganeh M., 2022. "Quantitative flood risk evaluation to improve drivers’ route choice decisions during disruptive precipitation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    3. Othman, Abdullah & El-Saoud, Waleed A. & Habeebullah, Turki & Shaaban, Fathy & Abotalib, Abotalib Z., 2023. "Risk assessment of flash flood and soil erosion impacts on electrical infrastructures in overcrowded mountainous urban areas under climate change," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    4. Hang Zeng & Ping Feng & Xin Li, 2014. "Reservoir Flood Routing Considering the Non-Stationarity of Flood Series in North China," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(12), pages 4273-4287, September.
    5. Hathout, Michel & Vuillet, Marc & Carvajal, Claudio & Peyras, Laurent & Diab, Youssef, 2019. "Expert judgments calibration and combination for assessment of river levee failure probability," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 377-392.
    6. Wei, Yian & Cheng, Yao & Liao, Haitao, 2024. "Optimal resilience-based restoration of a system subject to recurrent dependent hazards," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    7. Liu, Wenli & Chen, Elton J. & Yao, Erlei & Wang, Yanyu & Chen, Yangyang, 2021. "Reliability analysis of face stability for tunnel excavation in a dependent system," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    8. Ming, Bo & Liu, Pan & Guo, Shenglian & Cheng, Lei & Zhang, Jingwen, 2019. "Hydropower reservoir reoperation to adapt to large-scale photovoltaic power generation," Energy, Elsevier, vol. 179(C), pages 268-279.
    9. Zeng, Yujie & Liu, Dedi & Guo, Shenglian & Xiong, Lihua & Liu, Pan & Chen, Jie & Yin, Jiabo & Wu, Zhenhui & Zhou, Wan, 2023. "Assessing the effects of water resources allocation on the uncertainty propagation in the water–energy–food–society (WEFS) nexus," Agricultural Water Management, Elsevier, vol. 282(C).
    10. Dai Yamazaki & Mark A. Trigg, 2016. "The dynamics of Earth's surface water," Nature, Nature, vol. 540(7633), pages 348-349, December.
    11. Gong, Yu & Liu, Pan & Zhang, Jun & Liu, Dedi & Zhang, Xiaoqi & Zhang, Xiaojing, 2020. "Considering different streamflow forecast horizons in the quantitative flood risk analysis for a multi-reservoir system," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    12. Bian, Yiwen & Yan, Shuai & Xu, Hao, 2014. "Efficiency evaluation for regional urban water use and wastewater decontamination systems in China: A DEA approach," Resources, Conservation & Recycling, Elsevier, vol. 83(C), pages 15-23.
    13. Weiwei Song & Qing Xu & Xingqian Fu & Peng Zhang & Yong Pang & Dahao Song, 2018. "Research on the Relationship between Water Diversion and Water Quality of Xuanwu Lake, China," IJERPH, MDPI, vol. 15(6), pages 1-26, June.
    14. Dui, Hongyan & Wei, Xuan & Xing, Liudong & Chen, Liwei, 2023. "Performance-based maintenance analysis and resource allocation in irrigation networks," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    15. Li, Bo & Zhang, Qiling & Yang, Shengmei & Tian, Yaling & Li, Zhi, 2023. "Identification of failure modes and paths of reservoir dams under explosion loads," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    16. Rajabzadeh, Vida & Hekmatzadeh, Ali Akbar & Tabatabaie Shourijeh, Piltan & Torabi Haghighi, Ali, 2023. "Introducing a probabilistic framework to measure dam overtopping risk for dams benefiting from dual spillways," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    17. Zheng, Yide & Zhang, Yi, 2023. "Reliability analysis for system with dependent components based on survival signature and copula theory," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    18. Tao Bai & Lei Li & Peng-fei Mu & Bao-zhu Pan & Jin Liu, 2023. "Impact of Climate Change on Water Transfer Scale of Inter-basin Water Diversion Project," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(6), pages 2505-2525, May.
    19. Jiang, Dan & Wu, Bing & Cheng, Zhiyou & Xue, Jie & van Gelder, P.H.A.J.M., 2021. "Towards a probabilistic model for estimation of grounding accidents in fluctuating backwater zone of the Three Gorges Reservoir," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    20. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Lei & Liu, Qing & Dong, Shiyu & Guedes Soares, C., 2022. "Selection of countermeasure portfolio for shipping safety with consideration of investment risk aversion," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    2. Gong, Yu & Liu, Pan & Ming, Bo & Xu, Weifeng & Huang, Kangdi & Li, Xiao, 2021. "Deriving pack rules for hydro–photovoltaic hybrid power systems considering diminishing marginal benefit of energy," Applied Energy, Elsevier, vol. 304(C).
    3. Rajabzadeh, Vida & Hekmatzadeh, Ali Akbar & Tabatabaie Shourijeh, Piltan & Torabi Haghighi, Ali, 2023. "Introducing a probabilistic framework to measure dam overtopping risk for dams benefiting from dual spillways," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    4. Mendoza-Lugo, Miguel Angel & Morales-Nápoles, Oswaldo, 2024. "Mapping hazardous locations on a road network due to extreme gross vehicle weights," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    5. Gong, Yu & Liu, Pan & Ming, Bo & Feng, Maoyuan & Huang, Kangdi & Wang, Yibo, 2022. "Identifying the functional form of operating rules for hydro–photovoltaic hybrid power systems," Energy, Elsevier, vol. 243(C).
    6. Wen, Jiayi & Li, Xiaoxuan & Xue, Jingwei, 2024. "Feasibility evaluation of Copula theory for substation equipment with multiple nonlinear-related seismic response indexes," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    7. Cui, Xueting & Zhu, Shushang & Sun, Xiaoling & Li, Duan, 2013. "Nonlinear portfolio selection using approximate parametric Value-at-Risk," Journal of Banking & Finance, Elsevier, vol. 37(6), pages 2124-2139.
    8. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    9. Dominique Guégan & Wayne Tarrant, 2012. "On the necessity of five risk measures," Annals of Finance, Springer, vol. 8(4), pages 533-552, November.
    10. Giovanni Masala & Filippo Petroni, 2023. "Drawdown risk measures for asset portfolios with high frequency data," Annals of Finance, Springer, vol. 19(2), pages 265-289, June.
    11. Ke Zhou & Jiangjun Gao & Duan Li & Xiangyu Cui, 2017. "Dynamic mean–VaR portfolio selection in continuous time," Quantitative Finance, Taylor & Francis Journals, vol. 17(10), pages 1631-1643, October.
    12. Malavasi, Matteo & Ortobelli Lozza, Sergio & Trück, Stefan, 2021. "Second order of stochastic dominance efficiency vs mean variance efficiency," European Journal of Operational Research, Elsevier, vol. 290(3), pages 1192-1206.
    13. Rostagno, Luciano Martin, 2005. "Empirical tests of parametric and non-parametric Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) measures for the Brazilian stock market index," ISU General Staff Papers 2005010108000021878, Iowa State University, Department of Economics.
    14. Alois Pichler, 2013. "Premiums And Reserves, Adjusted By Distortions," Papers 1304.0490, arXiv.org.
    15. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2013. "A comparison of the original and revised Basel market risk frameworks for regulating bank capital," Journal of Economic Behavior & Organization, Elsevier, vol. 85(C), pages 249-268.
    16. David Neděla & Sergio Ortobelli & Tomáš Tichý, 2024. "Mean–variance vs trend–risk portfolio selection," Review of Managerial Science, Springer, vol. 18(7), pages 2047-2078, July.
    17. Rockafellar, R.T. & Royset, J.O., 2010. "On buffered failure probability in design and optimization of structures," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 499-510.
    18. Li, Bo & Hou, Peng-Wen & Chen, Ping & Li, Qing-Hua, 2016. "Pricing strategy and coordination in a dual channel supply chain with a risk-averse retailer," International Journal of Production Economics, Elsevier, vol. 178(C), pages 154-168.
    19. Jin, Xin & Zhang, Zhaolong & Shi, Xiaoqiang & Ju, Wenbin, 2014. "A review on wind power industry and corresponding insurance market in China: Current status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 1069-1082.
    20. Alexander, Gordon J. & Baptista, Alexandre M. & Yan, Shu, 2012. "When more is less: Using multiple constraints to reduce tail risk," Journal of Banking & Finance, Elsevier, vol. 36(10), pages 2693-2716.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.