IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v251y2024ics0951832024004599.html
   My bibliography  Save this article

A health assessment method with attribute importance modeling for complex systems using belief rule base

Author

Listed:
  • Lian, Zheng
  • Zhou, Zhi-Jie
  • Hu, Chang-Hua
  • Wang, Jie
  • Zhang, Chun-Chao
  • Zhang, Chao-Li

Abstract

In the health assessment for complex systems, system attributes refer to the indicators or components having an impact on the health state of the system. When assessing the health state of complex systems, the relative importance of system attributes should be accurately modeled, otherwise incorrect results may occur. Especially for some complex systems with small samples, data-driven methods are prone to overfitting. In this article, a new method using belief rule base (BRB) is proposed to model the relative importance of system attributes while assessing the health state. As an interpretable modeling tool, BRB constructs nonlinear mapping relationships between system attributes and health state. A data-knowledge hybrid-driven ensemble feature selection (DKH-EFS) method is developed to calculate the relative importance of the system attributes, namely attribute importance (AM). A random sensitivity analysis (RSA) method of the model output to the input of BRB is proposed to calculate the feature importance (FI) of BRB. A new parameter optimization model considering the consistency between the AM and FI is introduced to improve the modeling ability of BRB for the AM. A case study on the health assessment of the fiber optic gyroscope (FOG) validates the proposed method.

Suggested Citation

  • Lian, Zheng & Zhou, Zhi-Jie & Hu, Chang-Hua & Wang, Jie & Zhang, Chun-Chao & Zhang, Chao-Li, 2024. "A health assessment method with attribute importance modeling for complex systems using belief rule base," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004599
    DOI: 10.1016/j.ress.2024.110387
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024004599
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110387?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Jian Rui & Zhao, Meng-ke & Lu, Shou-xiang, 2024. "Accident spread and risk propagation mechanism in complex industrial system network," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    2. Vrignat, Pascal & Kratz, Frédéric & Avila, Manuel, 2022. "Sustainable manufacturing, maintenance policies, prognostics and health management: A literature review," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    3. Liang, Qingzhu & Yang, Yinghao & Zhang, Hang & Peng, Changhong & Lu, Jianchao, 2022. "Analysis of simplification in Markov state-based models for reliability assessment of complex safety systems," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    4. Zhao, Yunfei & Vaddi, Pavan Kumar & Pietrykowski, Michael & Khafizov, Marat & Smidts, Carol, 2023. "An empirical study of the added value of the sequential learning of model parameters to industrial system health monitoring," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    5. Jo, Wooseok & Lee, Seung Jun, 2024. "Human reliability evaluation method covering operator action timing for dynamic probabilistic safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    6. Li, Baode & Lu, Jing & Li, Jing & Zhu, Xuebin & Huang, Chuan & Su, Wan, 2022. "Scenario evolutionary analysis for maritime emergencies using an ensemble belief rule base," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    7. Vaidya, Omkarprasad S. & Kumar, Sushil, 2006. "Analytic hierarchy process: An overview of applications," European Journal of Operational Research, Elsevier, vol. 169(1), pages 1-29, February.
    8. Hu, Yang & Miao, Xuewen & Si, Yong & Pan, Ershun & Zio, Enrico, 2022. "Prognostics and health management: A review from the perspectives of design, development and decision," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    9. Borgonovo, Emanuele & Plischke, Elmar, 2016. "Sensitivity analysis: A review of recent advances," European Journal of Operational Research, Elsevier, vol. 248(3), pages 869-887.
    10. Jiang, Shengyu & He, Rui & Chen, Guoming & Zhu, Yuan & Shi, Jiaming & Liu, Kang & Chang, Yuanjiang, 2023. "Semi-supervised health assessment of pipeline systems based on optical fiber monitoring," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    11. Li, Guofa & Wei, Jingfeng & He, Jialong & Yang, Haiji & Meng, Fanning, 2023. "Implicit Kalman filtering method for remaining useful life prediction of rolling bearing with adaptive detection of degradation stage transition point," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    12. Abrahamsen, Eirik Bjorheim & Milazzo, Maria Francesca & Selvik, Jon T. & Asche, Frank & Abrahamsen, HÃ¥kon Bjorheim, 2020. "Prioritising investments in safety measures in the chemical industry by using the Analytic Hierarchy Process," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    13. Feng, Zhichao & Zhou, Zhijie & Hu, Changhua & Ban, Xiaojun & Hu, Guanyu, 2020. "A safety assessment model based on belief rule base with new optimization method," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    14. Che, Yunhong & Zheng, Yusheng & Forest, Florent Evariste & Sui, Xin & Hu, Xiaosong & Teodorescu, Remus, 2024. "Predictive health assessment for lithium-ion batteries with probabilistic degradation prediction and accelerating aging detection," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    15. Yuan, Shuaiqi & Cai, Jitao & Reniers, Genserik & Yang, Ming & Chen, Chao & Wu, Jiansong, 2022. "Safety barrier performance assessment by integrating computational fluid dynamics and evacuation modeling for toxic gas leakage scenarios," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    16. Wang, Ying-Ming & Yang, Jian-Bo & Xu, Dong-Ling, 2006. "Environmental impact assessment using the evidential reasoning approach," European Journal of Operational Research, Elsevier, vol. 174(3), pages 1885-1913, November.
    17. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Rui & Najafi, Seyedvahid & Zhang, Yingzhi, 2022. "A recursive method for the health assessment of systems using the proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    2. Ma, Jie & Cai, Li & Liao, Guobo & Yin, Hongpeng & Si, Xiaosheng & Zhang, Peng, 2023. "A multi-phase Wiener process-based degradation model with imperfect maintenance activities," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    3. Yin, Xiuxian & He, Wei & Cao, You & Ma, Ning & Zhou, Guohui & Li, Hongyu, 2024. "A new health state assessment method based on interpretable belief rule base with bimetric balance," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    4. Jiang, Weixin & Cui, Lirong & Liang, Xiaojun, 2024. "Optimal maintenance policies for three-unit parallel production systems considering yields," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    5. Li, Yan-Fu & Wang, Huan & Sun, Muxia, 2024. "ChatGPT-like large-scale foundation models for prognostics and health management: A survey and roadmaps," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    6. Dui, Hongyan & Wang, Jiafeng & Zhu, Tianmeng & Xing, Liudong, 2024. "Maintenance optimization methodology of edge cloud collaborative systems based on a gateway cost index in IIoT," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    7. Zhichao Chen & Tao Chen & Zhuohua Qu & Zaili Yang & Xuewei Ji & Yi Zhou & Hui Zhang, 2018. "Use of evidential reasoning and AHP to assess regional industrial safety," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-21, May.
    8. Ma, Yulin & Yang, Jun & Li, Lei, 2023. "Gradient aligned domain generalization with a mutual teaching teacher-student network for intelligent fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    9. Wang, Fu & Xiahou, Tangfan & Zhang, Xian & He, Pan & Yang, Taibo & Niu, Jiang & Liu, Caixue & Liu, Yu, 2024. "Convolutional preprocessing Transformer-based fault diagnosis for rectifier-filter circuits in nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    10. Luo, Yi & Zhao, Xiujie & Liu, Bin & He, Shuguang, 2024. "Condition-based maintenance policy for systems under dynamic environment," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    11. Mandelli, Diego & Wang, Congjian & Agarwal, Vivek & Lin, Linyu & Manjunatha, Koushik A., 2024. "Reliability modeling in a predictive maintenance context: A margin-based approach," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    12. Zhou, Taotao & Han, Te & Droguett, Enrique Lopez, 2022. "Towards trustworthy machine fault diagnosis: A probabilistic Bayesian deep learning framework," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    13. Vincenzo Varriale & Antonello Cammarano & Francesca Michelino & Mauro Caputo, 2021. "Sustainable Supply Chains with Blockchain, IoT and RFID: A Simulation on Order Management," Sustainability, MDPI, vol. 13(11), pages 1-23, June.
    14. Gao, Bin & Ni, Ming-Fang, 2009. "A note on article "The evidential reasoning approach for multiple attribute decision analysis using interval belief degrees"," European Journal of Operational Research, Elsevier, vol. 197(2), pages 809-812, September.
    15. Jochen Wulf, 2020. "Development of an AHP hierarchy for managing omnichannel capabilities: a design science research approach," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 39-68, April.
    16. Makam, Vaishno Devi & Millossovich, Pietro & Tsanakas, Andreas, 2021. "Sensitivity analysis with χ2-divergences," Insurance: Mathematics and Economics, Elsevier, vol. 100(C), pages 372-383.
    17. Nina Almasifar & Tülay Özdemir Canbolat & Milad Akhavan & Roberto Alonso González-Lezcano, 2021. "Proposing a New Methodology for Monument Conservation “SCOPE MANAGEMENT” by the Use of an Analytic Hierarchy Process Project Management Institute System and the ICOMOS Burra Charter," Sustainability, MDPI, vol. 13(23), pages 1-13, November.
    18. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
    19. Jitendar Kumar Khatri & Bhimaraya Metri, 2016. "SWOT-AHP Approach for Sustainable Manufacturing Strategy Selection: A Case of Indian SME," Global Business Review, International Management Institute, vol. 17(5), pages 1211-1226, October.
    20. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.