IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v226y2022ics0951832022003015.html
   My bibliography  Save this article

A novel procedure to evaluate the performance of failure assessment models

Author

Listed:
  • Lingyun, Guo
  • Markus, Niffenegger
  • Jing, Zhou

Abstract

The quantification for overall performance of failure assessment models (FAM) is a challenging task. In the first part of this paper, we propose a novel procedure to evaluate FAM's overall performance based on reliability engineering and system safety. This procedure is composed of three parts: 1. proposing the evaluation index system for FAM's performance based on the uncertainty of Prediction Accuracy (PA); 2. calculating the FAM's overall performance scores, which contains three steps: determining the weights of the criteria in the evaluation index system; calculating the decision matrix for different FAMs; and computing FAM's overall performance; 3. analyzing the evaluation results to give recommendations. In the second part of this paper, we demonstrate the application of the novel procedure to evaluate the performance of 9 FAMs for the integrity assessment of pipes containing axial-oriented part-through cracks on the outer surface. This evaluation is based on 250 well-documented pipe burst experiments. The results show that: R6-Option 2A-local solution (2016) gives the best overall prediction. In addition, different Multi-Criteria Decision Making (MCDM) methods have different focuses. VIKOR and TOPSIS are more considering the impact of high weight criteria, especially VIKOR. SWM and PROMETHEE II care more about FAM's overall performance.

Suggested Citation

  • Lingyun, Guo & Markus, Niffenegger & Jing, Zhou, 2022. "A novel procedure to evaluate the performance of failure assessment models," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:reensy:v:226:y:2022:i:c:s0951832022003015
    DOI: 10.1016/j.ress.2022.108667
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022003015
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108667?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Su, Yue & Li, Jingfa & Yu, Bo & Zhao, Yanlin & Yao, Jun, 2021. "Fast and accurate prediction of failure pressure of oil and gas defective pipelines using the deep learning model," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Lin, Song-Shun & Shen, Shui-Long & Zhou, Annan & Xu, Ye-Shuang, 2021. "Novel model for risk identification during karst excavation," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    3. Nastaran Chitsaz & Ali Azarnivand, 2017. "Water Scarcity Management in Arid Regions Based on an Extended Multiple Criteria Technique," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 233-250, January.
    4. Yang, Yang & Li, Suzhen & Zhang, Pengcheng, 2022. "Data-driven accident consequence assessment on urban gas pipeline network based on machine learning," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    5. Székely, Gábor J. & Rizzo, Maria L., 2013. "The distance correlation t-test of independence in high dimension," Journal of Multivariate Analysis, Elsevier, vol. 117(C), pages 193-213.
    6. J. P. Brans & Ph. Vincke, 1985. "Note---A Preference Ranking Organisation Method," Management Science, INFORMS, vol. 31(6), pages 647-656, June.
    7. Kumar, Ravi & Singal, S.K., 2015. "Penstock material selection in small hydropower plants using MADM methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 240-255.
    8. Abrahamsen, Eirik Bjorheim & Milazzo, Maria Francesca & Selvik, Jon T. & Asche, Frank & Abrahamsen, HÃ¥kon Bjorheim, 2020. "Prioritising investments in safety measures in the chemical industry by using the Analytic Hierarchy Process," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    9. Kheybari, Siamak & Rezaie, Fariba Mahdi & Farazmand, Hadis, 2020. "Analytic network process: An overview of applications," Applied Mathematics and Computation, Elsevier, vol. 367(C).
    10. Zhang, Hewei & Dong, Shaohua & Ling, Jiatong & Zhang, Laibin & Cheang, Brenda, 2020. "A modified method for the safety factor parameter: The use of big data to improve petroleum pipeline reliability assessment," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    11. Ahmed, Umair & Carpitella, Silvia & Certa, Antonella, 2021. "An integrated methodological approach for optimising complex systems subjected to predictive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Zhanfeng & Li, Xuyao & Wang, Wen & Li, Yan & Shi, Lei & Li, Yuxing, 2023. "Residual strength prediction of corroded pipelines using multilayer perceptron and modified feedforward neural network," Reliability Engineering and System Safety, Elsevier, vol. 231(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Yuanbo & Yang, Hao & Duan, Pengfei & Li, Luling & Zio, Enrico & Liu, Cuiwei & Li, Yuxing, 2022. "Improved quantitative risk assessment of a natural gas pipeline considering high-consequence areas," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    2. Li, Bo & Zhang, Qiling & Yang, Shengmei & Tian, Yaling & Li, Zhi, 2023. "Identification of failure modes and paths of reservoir dams under explosion loads," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    3. Zhang, Qiongfang & Xu, Nan & Ersoy, Daniel & Liu, Yongming, 2022. "Manifold-based Conditional Bayesian network for aging pipe yield strength estimation with non-destructive measurements," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    4. Zhou, Jie & Lin, Haifei & Li, Shugang & Jin, Hongwei & Zhao, Bo & Liu, Shihao, 2023. "Leakage diagnosis and localization of the gas extraction pipeline based on SA-PSO BP neural network," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    5. Jiang, Yanping & Liang, Xia & Liang, Haiming & Yang, Ningman, 2018. "Multiple criteria decision making with interval stochastic variables: A method based on interval stochastic dominance," European Journal of Operational Research, Elsevier, vol. 271(2), pages 632-643.
    6. Juliana Martins Ruzante & Valerie J. Davidson & Julie Caswell & Aamir Fazil & John A. L. Cranfield & Spencer J. Henson & Sven M. Anders & Claudia Schmidt & Jeffrey M. Farber, 2010. "A Multifactorial Risk Prioritization Framework for Foodborne Pathogens," Risk Analysis, John Wiley & Sons, vol. 30(5), pages 724-742, May.
    7. Rauf Ahmad, M., 2019. "A significance test of the RV coefficient in high dimensions," Computational Statistics & Data Analysis, Elsevier, vol. 131(C), pages 116-130.
    8. Francesco Sica & Francesco Tajani & Maria Rosaria Guarini & Rossana Ranieri, 2023. "A Sensitivity Index to Perform the Territorial Sustainability in Uncertain Decision-Making Conditions," Land, MDPI, vol. 12(2), pages 1-21, February.
    9. Rihab Khemiri & Khaoula Elbedoui-Maktouf & Bernard Grabot & Belhassen Zouari, 2017. "A fuzzy multi-criteria decision making approach for managing performance and risk in integrated procurement-production planning," Post-Print hal-01758604, HAL.
    10. Martina Kuncova & Jana Seknickova, 2022. "Two-stage weighted PROMETHEE II with results’ visualization," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 30(2), pages 547-571, June.
    11. Zhang, Qingyang, 2019. "Independence test for large sparse contingency tables based on distance correlation," Statistics & Probability Letters, Elsevier, vol. 148(C), pages 17-22.
    12. Yuan-Wei Du & Yi-Pin Fan, 2023. "Spatiotemporal Dynamics of Agricultural Sustainability Assessment: A Study across 30 Chinese Provinces," Sustainability, MDPI, vol. 15(11), pages 1-23, June.
    13. Luis Santos Pereira, 2017. "Water, Agriculture and Food: Challenges and Issues," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(10), pages 2985-2999, August.
    14. Bo, Yimin & Bao, Minglei & Ding, Yi & Hu, Yishuang, 2024. "A DNN-based reliability evaluation method for multi-state series-parallel systems considering semi-Markov process," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    15. Alessio Ishizaka & Philippe Nemery, 2013. "A Multi-Criteria Group Decision Framework for Partner Grouping When Sharing Facilities," Group Decision and Negotiation, Springer, vol. 22(4), pages 773-799, July.
    16. Wang, Chang & Zheng, Jianqin & Liang, Yongtu & Wang, Bohong & Klemeš, Jiří Jaromír & Zhu, Zhu & Liao, Qi, 2022. "Deeppipe: An intelligent monitoring framework for operating condition of multi-product pipelines," Energy, Elsevier, vol. 261(PB).
    17. Manuel Febrero-Bande & Wenceslao González-Manteiga & Manuel Oviedo de la Fuente, 2019. "Variable selection in functional additive regression models," Computational Statistics, Springer, vol. 34(2), pages 469-487, June.
    18. Ricardo Fraiman & Leonardo Moreno & Sebastian Vallejo, 2017. "Some hypothesis tests based on random projection," Computational Statistics, Springer, vol. 32(3), pages 1165-1189, September.
    19. Ivair R. Silva & Yan Zhuang & Julio C. A. da Silva Junior, 2022. "Kronecker delta method for testing independence between two vectors in high-dimension," Statistical Papers, Springer, vol. 63(2), pages 343-365, April.
    20. Chao Bao & Dongmei He, 2019. "Scenario Modeling of Urbanization Development and Water Scarcity Based on System Dynamics: A Case Study of Beijing–Tianjin–Hebei Urban Agglomeration, China," IJERPH, MDPI, vol. 16(20), pages 1-19, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:226:y:2022:i:c:s0951832022003015. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.