IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0145604.html
   My bibliography  Save this article

Discriminating between Light- and Heavy-Tailed Distributions with Limit Theorem

Author

Listed:
  • Krzysztof Burnecki
  • Agnieszka Wylomanska
  • Aleksei Chechkin

Abstract

In this paper we propose an algorithm to distinguish between light- and heavy-tailed probability laws underlying random datasets. The idea of the algorithm, which is visual and easy to implement, is to check whether the underlying law belongs to the domain of attraction of the Gaussian or non-Gaussian stable distribution by examining its rate of convergence. The method allows to discriminate between stable and various non-stable distributions. The test allows to differentiate between distributions, which appear the same according to standard Kolmogorov–Smirnov test. In particular, it helps to distinguish between stable and Student’s t probability laws as well as between the stable and tempered stable, the cases which are considered in the literature as very cumbersome. Finally, we illustrate the procedure on plasma data to identify cases with so-called L-H transition.

Suggested Citation

  • Krzysztof Burnecki & Agnieszka Wylomanska & Aleksei Chechkin, 2015. "Discriminating between Light- and Heavy-Tailed Distributions with Limit Theorem," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-23, December.
  • Handle: RePEc:plo:pone00:0145604
    DOI: 10.1371/journal.pone.0145604
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0145604
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0145604&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0145604?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Giuricich, Mario Nicoló & Burnecki, Krzysztof, 2019. "Modelling of left-truncated heavy-tailed data with application to catastrophe bond pricing," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 498-513.
    2. Kumar, A. & Wyłomańska, A. & Połoczański, R. & Sundar, S., 2017. "Fractional Brownian motion time-changed by gamma and inverse gamma process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 648-667.
    3. Hanieh Panahi, 2016. "Model Selection Test for the Heavy-Tailed Distributions under Censored Samples with Application in Financial Data," IJFS, MDPI, vol. 4(4), pages 1-14, December.
    4. Szczurek, Andrzej & Maciejewska, Monika & Wyłomańska, Agnieszka & Sikora, Grzegorz & Balcerek, Michał & Teuerle, Marek, 2016. "Discrimination of particulate matter emission sources using stochastic methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 452-466.
    5. Jabłońska-Sabuka, Matylda & Teuerle, Marek & Wyłomańska, Agnieszka, 2017. "Bivariate sub-Gaussian model for stock index returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 628-637.
    6. Marcin Pitera & Aleksei Chechkin & Agnieszka Wyłomańska, 2022. "Goodness-of-fit test for $$\alpha$$ α -stable distribution based on the quantile conditional variance statistics," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 387-424, June.
    7. Gajda, Janusz & Bartnicki, Grzegorz & Burnecki, Krzysztof, 2018. "Modeling of water usage by means of ARFIMA–GARCH processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 512(C), pages 644-657.
    8. Vitaly Promyslov & Kirill Semenkov, 2021. "Non-Statistical Method for Validation the Time Characteristics of Digital Control Systems with a Cyclic Processing Algorithm," Mathematics, MDPI, vol. 9(15), pages 1-16, July.
    9. Song, Wanqing & Duan, Shouwu & Zio, Enrico & Kudreyko, Aleksey, 2022. "Multifractional and long-range dependent characteristics for remaining useful life prediction of cracking gas compressor," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    10. Janczura, Joanna & Burnecki, Krzysztof & Muszkieta, Monika & Stanislavsky, Aleksander & Weron, Aleksander, 2022. "Classification of random trajectories based on the fractional Lévy stable motion," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    11. Agnieszka Wyłomańska & D Robert Iskander & Krzysztof Burnecki, 2020. "Omnibus test for normality based on the Edgeworth expansion," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-36, June.
    12. Burnecki, Krzysztof & Sikora, Grzegorz, 2017. "Identification and validation of stable ARFIMA processes with application to UMTS data," Chaos, Solitons & Fractals, Elsevier, vol. 102(C), pages 456-466.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0145604. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.