IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v486y2017icp628-637.html
   My bibliography  Save this article

Bivariate sub-Gaussian model for stock index returns

Author

Listed:
  • Jabłońska-Sabuka, Matylda
  • Teuerle, Marek
  • Wyłomańska, Agnieszka

Abstract

Financial time series are commonly modeled with methods assuming data normality. However, the real distribution can be nontrivial, also not having an explicitly formulated probability density function. In this work we introduce novel parameter estimation and high-powered distribution testing methods which do not rely on closed form densities, but use the characteristic functions for comparison. The approach applied to a pair of stock index returns demonstrates that such a bivariate vector can be a sample coming from a bivariate sub-Gaussian distribution. The methods presented here can be applied to any nontrivially distributed financial data, among others.

Suggested Citation

  • Jabłońska-Sabuka, Matylda & Teuerle, Marek & Wyłomańska, Agnieszka, 2017. "Bivariate sub-Gaussian model for stock index returns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 486(C), pages 628-637.
  • Handle: RePEc:eee:phsmap:v:486:y:2017:i:c:p:628-637
    DOI: 10.1016/j.physa.2017.05.080
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037843711730599X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2017.05.080?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jiménez-Gamero, M.D. & Alba-Fernández, V. & Muñoz-García, J. & Chalco-Cano, Y., 2009. "Goodness-of-fit tests based on empirical characteristic functions," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 3957-3971, October.
    2. Muneya Matsui & Akimichi Takemura, 2008. "Goodness-of-fit tests for symmetric stable distributions—Empirical characteristic function approach," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 17(3), pages 546-566, November.
    3. Rafał Weron, 2001. "Levy-Stable Distributions Revisited: Tail Index> 2does Not Exclude The Levy-Stable Regime," International Journal of Modern Physics C (IJMPC), World Scientific Publishing Co. Pte. Ltd., vol. 12(02), pages 209-223.
    4. Fan, Yanqin, 1997. "Goodness-of-Fit Tests for a Multivariate Distribution by the Empirical Characteristic Function," Journal of Multivariate Analysis, Elsevier, vol. 62(1), pages 36-63, July.
    5. Menn, Christian & Rachev, Svetlozar T., 2005. "A GARCH option pricing model with [alpha]-stable innovations," European Journal of Operational Research, Elsevier, vol. 163(1), pages 201-209, May.
    6. Ogata, Hiroaki, 2013. "Estimation for multivariate stable distributions with generalized empirical likelihood," Journal of Econometrics, Elsevier, vol. 172(2), pages 248-254.
    7. repec:ulb:ulbeco:2013/136280 is not listed on IDEAS
    8. Gajda, Janusz & Wyłomańska, Agnieszka, 2013. "Tempered stable Lévy motion driven by stable subordinator," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(15), pages 3168-3176.
    9. Chen, Bin & Song, Zhaogang, 2013. "Testing whether the underlying continuous-time process follows a diffusion: An infinitesimal operator-based approach," Journal of Econometrics, Elsevier, vol. 173(1), pages 83-107.
    10. Bollerslev, Tim, 1990. "Modelling the Coherence in Short-run Nominal Exchange Rates: A Multivariate Generalized ARCH Model," The Review of Economics and Statistics, MIT Press, vol. 72(3), pages 498-505, August.
    11. Kirt Butler & Katsushi Okada, 2009. "The relative contribution of conditional mean and volatility in bivariate returns to international stock market indices," Applied Financial Economics, Taylor & Francis Journals, vol. 19(1), pages 1-15.
    12. Krzysztof Burnecki & Agnieszka Wylomanska & Aleksei Chechkin, 2015. "Discriminating between Light- and Heavy-Tailed Distributions with Limit Theorem," PLOS ONE, Public Library of Science, vol. 10(12), pages 1-23, December.
    13. Kirt C. Butler & Katsushi Okada, 2008. "Higher-Order Terms in Bivariate Returns to International Stock Market Indices," Multinational Finance Journal, Multinational Finance Journal, vol. 12(1-2), pages 127-155, March-Jun.
    14. Wyłomańska, Agnieszka, 2012. "Arithmetic Brownian motion subordinated by tempered stable and inverse tempered stable processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5685-5696.
    15. Benoit Mandelbrot, 1963. "New Methods in Statistical Economics," Journal of Political Economy, University of Chicago Press, vol. 71(5), pages 421-421.
    16. Kim, Young Shin & Rachev, Svetlozar T. & Bianchi, Michele Leonardo & Fabozzi, Frank J., 2008. "Financial market models with Lévy processes and time-varying volatility," Journal of Banking & Finance, Elsevier, vol. 32(7), pages 1363-1378, July.
    17. Dedi Rosadi & Manfred Deistler, 2011. "Estimating the codifference function of linear time series models with infinite variance," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 73(3), pages 395-429, May.
    18. Dominicy, Yves & Veredas, David, 2013. "The method of simulated quantiles," Journal of Econometrics, Elsevier, vol. 172(2), pages 235-247.
    19. Weron, Rafał, 2004. "Computationally intensive Value at Risk calculations," Papers 2004,32, Humboldt University of Berlin, Center for Applied Statistics and Economics (CASE).
    20. Klar, Bernhard & Meintanis, Simos G., 2005. "Tests for normal mixtures based on the empirical characteristic function," Computational Statistics & Data Analysis, Elsevier, vol. 49(1), pages 227-242, April.
    21. Janczura, Joanna & Wyłomańska, Agnieszka, 2009. "Subdynamics of financial data from fractional Fokker-Planck equation," MPRA Paper 30649, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiménez-Gamero, M. Dolores & Kim, Hyoung-Moon, 2015. "Fast goodness-of-fit tests based on the characteristic function," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 172-191.
    2. Meintanis, Simos G. & Ngatchou-Wandji, Joseph & Taufer, Emanuele, 2015. "Goodness-of-fit tests for multivariate stable distributions based on the empirical characteristic function," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 171-192.
    3. Kumar, A. & Wyłomańska, A. & Połoczański, R. & Sundar, S., 2017. "Fractional Brownian motion time-changed by gamma and inverse gamma process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 648-667.
    4. Calzolari, Giorgio & Halbleib, Roxana, 2018. "Estimating stable latent factor models by indirect inference," Journal of Econometrics, Elsevier, vol. 205(1), pages 280-301.
    5. Halkos, George E. & Tsirivis, Apostolos S., 2019. "Effective energy commodity risk management: Econometric modeling of price volatility," Economic Analysis and Policy, Elsevier, vol. 63(C), pages 234-250.
    6. Tsionas, Mike G., 2016. "Bayesian analysis of multivariate stable distributions using one-dimensional projections," Journal of Multivariate Analysis, Elsevier, vol. 143(C), pages 185-193.
    7. Stachura Michał & Wodecka Barbara, 2022. "k-th record estimator of the scale parameter of the α-stable distribution," Statistics in Transition New Series, Statistics Poland, vol. 23(4), pages 203-215, December.
    8. Borak, Szymon & Misiorek, Adam & Weron, Rafał, 2010. "Models for heavy-tailed asset returns," SFB 649 Discussion Papers 2010-049, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    9. Yves Dominicy & Hiroaki Ogata & David Veredas, 2013. "Inference for vast dimensional elliptical distributions," Computational Statistics, Springer, vol. 28(4), pages 1853-1880, August.
    10. Szczurek, Andrzej & Maciejewska, Monika & Wyłomańska, Agnieszka & Sikora, Grzegorz & Balcerek, Michał & Teuerle, Marek, 2016. "Discrimination of particulate matter emission sources using stochastic methods," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 463(C), pages 452-466.
    11. Halkos, George & Tzirivis, Apostolos, 2018. "Effective energy commodities’ risk management: Econometric modeling of price volatility," MPRA Paper 90781, University Library of Munich, Germany.
    12. Broda, Simon A. & Haas, Markus & Krause, Jochen & Paolella, Marc S. & Steude, Sven C., 2013. "Stable mixture GARCH models," Journal of Econometrics, Elsevier, vol. 172(2), pages 292-306.
    13. João Guerra & Manuel Guerra & Zachary Polaski, 2019. "Market Timing with Option-Implied Distributions in an Exponentially Tempered Stable Lévy Market," Working Papers REM 2019/74, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    14. Marc S. Paolella, 2016. "Stable-GARCH Models for Financial Returns: Fast Estimation and Tests for Stability," Econometrics, MDPI, vol. 4(2), pages 1-28, May.
    15. Jovanovic, Franck & Schinckus, Christophe, 2017. "Econophysics and Financial Economics: An Emerging Dialogue," OUP Catalogue, Oxford University Press, number 9780190205034.
    16. Gong, Xiaoli & Zhuang, Xintian, 2017. "American option valuation under time changed tempered stable Lévy processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 57-68.
    17. Franses,Philip Hans & Dijk,Dick van, 2000. "Non-Linear Time Series Models in Empirical Finance," Cambridge Books, Cambridge University Press, number 9780521779654.
    18. Jiménez-Gamero, M.D. & Alba-Fernández, M.V. & Jodrá, P. & Barranco-Chamorro, I., 2015. "An approximation to the null distribution of a class of Cramér–von Mises statistics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 118(C), pages 258-272.
    19. Karling, Maicon J. & Lopes, Sílvia R.C. & de Souza, Roberto M., 2023. "Multivariate α-stable distributions: VAR(1) processes, measures of dependence and their estimations," Journal of Multivariate Analysis, Elsevier, vol. 195(C).
    20. Julyerme M. Tonin & Carlos M. R. Vieira & Rui M. de Sousa Fragoso & João G. Martines Filho, 2020. "Conditional correlation and volatility between spot and futures markets for soybean and corn," Agribusiness, John Wiley & Sons, Ltd., vol. 36(4), pages 707-724, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:486:y:2017:i:c:p:628-637. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.