IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v219y2022ics0951832021006980.html
   My bibliography  Save this article

Predicting road blockage due to building damage following earthquakes

Author

Listed:
  • Yu, Yun-Chi
  • Gardoni, Paolo

Abstract

Transportation infrastructure supports the social and economic activities of communities. One of the impacts of roads’ disruption is the obstruction of emergency services (e.g., ambulance, firefighting, evacuation). Furthermore, the recovery process of a community following an extreme event (e.g., a natural hazard) depends on the functionality of the transportation infrastructure. Therefore, conducting a risk and resilience analysis of transportation infrastructure is critical to help communities minimize the initial impact of hazards and promote a rapid recovery. Current approaches model the probability of road blockage due to building damage using high-resolution optical satellite images and aerial photographs collected after past events. However, the data used by these methods are limited, and few data have been collected before 2010. Besides, data may not be available for specific regions that have not experienced recent earthquakes. Thus, a probabilistic predictive method is needed for risk and resilience analysis of roads. This paper proposes a probabilistic model using the data from the 2010 Haiti Earthquake and calibrated by Bayesian approach to predict the debris distance from undamaged buildings (e.g., the distance debris can reach from the footprint of the undamaged building). The model is then used to construct fragility curves that give the conditional probability of road blockage at a given road section for a given seismic intensity. The proposed model considers the relevant factors affecting the road blockage probability, including building types, damage level, and road characteristics. The probability of road blockage at a given road section is estimated for the four general road section types, considering buildings on only one side of the road or both sides, and with or without a raised traffic median. The probability of road blockage for an entire road is then calculated by system and parallel reliability analysis. The proposed models apply to any general urban area without the dependence on historical data from past earthquakes.

Suggested Citation

  • Yu, Yun-Chi & Gardoni, Paolo, 2022. "Predicting road blockage due to building damage following earthquakes," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
  • Handle: RePEc:eee:reensy:v:219:y:2022:i:c:s0951832021006980
    DOI: 10.1016/j.ress.2021.108220
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021006980
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.108220?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Zhidong & Navneet, Kumar & van Dam, Wirdmer & Van Mieghem, Piet, 2021. "Robustness assessment of multimodal freight transport networks," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    2. Lam, Juan Carlos & Adey, Bryan T. & Heitzler, Magnus & Hackl, Jürgen & Gehl, Pierre & van Erp, Noel & D'Ayala, Dina & van Gelder, Pieter & Hurni, Lorenz, 2018. "Stress tests for a road network using fragility functions and functional capacity loss functions," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 78-93.
    3. Kosanoglu, Fuat & Bier, Vicki M., 2020. "Target-oriented utility for interdiction of transportation networks," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    4. Wandelt, Sebastian & Shi, Xing & Sun, Xiaoqian, 2021. "Estimation and improvement of transportation network robustness by exploiting communities," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    5. Bucar, Raif C.B. & Hayeri, Yeganeh M., 2020. "Quantitative assessment of the impacts of disruptive precipitation on surface transportation," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    6. Almotahari, Amirmasoud & Yazici, Anil, 2021. "A computationally efficient metric for identification of critical links in large transportation networks," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    7. Bono, Flavio & Gutiérrez, Eugenio, 2011. "A network-based analysis of the impact of structural damage on urban accessibility following a disaster: the case of the seismically damaged Port Au Prince and Carrefour urban road networks," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1443-1455.
    8. Zou, Qiling & Chen, Suren, 2019. "Enhancing resilience of interdependent traffic-electric power system," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    9. Dragos Toma-Danila, 2018. "A GIS framework for evaluating the implications of urban road network failure due to earthquakes: Bucharest (Romania) case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 97-111, September.
    10. Cats, Oded & Koppenol, Gert-Jaap & Warnier, Martijn, 2017. "Robustness assessment of link capacity reduction for complex networks: Application for public transport systems," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 544-553.
    11. Panjamani Anbazhagan & Sushma Srinivas & Deepu Chandran, 2012. "Classification of road damage due to earthquakes," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 60(2), pages 425-460, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Xinrui & Fan, Shiqi & Lucy, John & Yang, Zaili, 2022. "Risk analysis of cargo theft from freight supply chains using a data-driven Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    2. Zhao, Taiyi & Tang, Yuchun & Li, Qiming & Wang, Jingquan, 2023. "Resilience-oriented network reconfiguration strategies for community emergency medical services," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    3. Pan, Xing & Dang, Yuheng & Wang, Huixiong & Hong, Dongpao & Li, Yuehong & Deng, Hongxu, 2022. "Resilience model and recovery strategy of transportation network based on travel OD-grid analysis," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    4. Fabio De Felice & Ilaria Baffo & Antonella Petrillo, 2022. "Critical Infrastructures Overview: Past, Present and Future," Sustainability, MDPI, vol. 14(4), pages 1-20, February.
    5. Wang, Ning & Xu, Yan & Wang, Sutong, 2022. "Interpretable boosting tree ensemble method for multisource building fire loss prediction," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    6. Nguyen, Hung & Abdel-Mottaleb, Noha & Uddin, Shihab & Zhang, Qiong & Lu, Qing & Zhang, He & Li, Mingyang, 2022. "Joint maintenance planning of deteriorating co-located road and water infrastructures with interdependencies," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    7. Kurmankhojayev, Daniyar & Li, Guoyuan & Chen, Anthony, 2024. "Link criticality index: Refinement, framework extension, and a case study," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    8. Jorge M. Gaspar-Escribano & Sandra Martínez-Cuevas & Pouye Yazdi & Alejandra Staller & Yolanda Torres, 2023. "Extending urban seismic risk assessment to open spaces for the 2011 Lorca earthquake scenario," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(2), pages 1455-1473, June.
    9. Chen, Tianyi & Wong, Yiik Diew & Shi, Xiupeng & Wang, Xueqin, 2022. "Optimized structure learning of Bayesian Network for investigating causation of vehicles’ on-road crashes," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    10. Zhengbo Hao & Yizhe Wang & Xiaoguang Yang, 2024. "Every Second Counts: A Comprehensive Review of Route Optimization and Priority Control for Urban Emergency Vehicles," Sustainability, MDPI, vol. 16(7), pages 1-24, March.
    11. Opabola, Eyitayo A. & Galasso, Carmine, 2024. "A probabilistic framework for post-disaster recovery modeling of buildings and electric power networks in developing countries," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    12. Gangwal, Utkarsh & Dong, Shangjia, 2022. "Critical facility accessibility rapid failure early-warning detection and redundancy mapping in urban flooding," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    13. Liu, Qiang & Tang, Aiping & Huang, Delong & Huang, Ziyuan & Zhang, Bin & Xu, Xiuchen, 2022. "Total probabilistic measure for the potential risk of regional roads exposed to landslides," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    14. Hosseini, Yaser & Mohammadi, Reza Karami & Yang, Tony Y., 2024. "A comprehensive approach in post-earthquake blockage prediction of urban road network and emergency resilience optimization," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    15. Taghizadeh, Mehdi & Mahsuli, Mojtaba & Poorzahedy, Hossain, 2023. "Probabilistic framework for evaluating the seismic resilience of transportation systems during emergency medical response," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    16. Wallius, Eetu & Klock, Ana Carolina Tomé & Hamari, Juho, 2022. "Playing it safe: A literature review and research agenda on motivational technologies in transportation safety," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    17. Yingying Wu & Zhen Xu & Chenxi Liang & Ruizhuo Song, 2022. "Post-Earthquake Traffic Simulation Considering Road Traversability," Sustainability, MDPI, vol. 14(18), pages 1-22, September.
    18. Du, Ao & Wang, Xiaowei & Xie, Yazhou & Dong, You, 2023. "Regional seismic risk and resilience assessment: Methodological development, applicability, and future research needs – An earthquake engineering perspective," Reliability Engineering and System Safety, Elsevier, vol. 233(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kurmankhojayev, Daniyar & Li, Guoyuan & Chen, Anthony, 2024. "Link criticality index: Refinement, framework extension, and a case study," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    2. Boakye, Jessica & Guidotti, Roberto & Gardoni, Paolo & Murphy, Colleen, 2022. "The role of transportation infrastructure on the impact of natural hazards on communities," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    3. Wandelt, Sebastian & Lin, Wei & Sun, Xiaoqian & Zanin, Massimiliano, 2022. "From random failures to targeted attacks in network dismantling," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    4. Zhang, Jianhua & Shao, Wenchao & Yang, Liqiang & Zhao, Xun & Liu, Weizhi, 2023. "Robustness assessments of urban rail transit networks based on user equilibrium with time compensation mechanism," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 613(C).
    5. Wang, Ziqi & Pei, Yulong & Liu, Jing & Liu, Hehang, 2023. "Vulnerability analysis of urban road networks based on traffic situation," International Journal of Critical Infrastructure Protection, Elsevier, vol. 41(C).
    6. Wandelt, Sebastian & Sun, Xiaoqian & Zhang, Anming, 2023. "Towards analyzing the robustness of the Integrated Global Transportation Network Abstraction (IGTNA)," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
    7. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & He, Zhichao, 2024. "A network-based approach to improving robustness of a high-speed train by structure adjustment," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    8. Zizhen Xu & Shauhrat S. Chopra, 2023. "Interconnectedness enhances network resilience of multimodal public transportation systems for Safe-to-Fail urban mobility," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Bucar, Raif C.B. & Hayeri, Yeganeh M., 2022. "Quantitative flood risk evaluation to improve drivers’ route choice decisions during disruptive precipitation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    10. Yamada, Takashi, 2022. "Generalizing the probability of reaching a destination in case of route blockage," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    11. Zhang, Mengyao & Huang, Tao & Guo, Zhaoxia & He, Zhenggang, 2022. "Complex-network-based traffic network analysis and dynamics: A comprehensive review," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    12. Xu, Zizhen & Chopra, Shauhrat S., 2022. "Network-based Assessment of Metro Infrastructure with a Spatial–temporal Resilience Cycle Framework," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    13. Liu, Qiang & Huang, Delong & Zhang, Bin & Tang, Aiping & Xu, Xiuchen, 2024. "Developing a probability-based technique to improve the measurement of landslide vulnerability on regional roads," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    14. Xu, Peng-Cheng & Lu, Qing-Chang & Xie, Chi & Cheong, Taesu, 2024. "Modeling the resilience of interdependent networks: The role of function dependency in metro and bus systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    15. Wang, Shuliang & Chen, Chen & Zhang, Jianhua & Gu, Xifeng & Huang, Xiaodi, 2022. "Vulnerability assessment of urban road traffic systems based on traffic flow," International Journal of Critical Infrastructure Protection, Elsevier, vol. 38(C).
    16. Dragos Toma-Danila, 2018. "A GIS framework for evaluating the implications of urban road network failure due to earthquakes: Bucharest (Romania) case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 93(1), pages 97-111, September.
    17. Wei Zhang & Duanqiang Zhai & Ziqi Wang, 2024. "Travel Characteristics and Vulnerability Analysis of Road Resource Utilization Based on Taxi GPS Data," Sustainability, MDPI, vol. 16(14), pages 1-16, July.
    18. Bíl, Michal & Vodák, Rostislav & Kubeček, Jan & Bílová, Martina & Sedoník, Jiří, 2015. "Evaluating road network damage caused by natural disasters in the Czech Republic between 1997 and 2010," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 90-103.
    19. Pei, Shunshun & Zhai, Changhai & Hu, Jie, 2024. "Surrogate model-assisted seismic resilience assessment of the interdependent transportation and healthcare system considering a two-stage recovery strategy," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    20. Bucar, Raif C.B. & Hayeri, Yeganeh M., 2020. "Quantitative assessment of the impacts of disruptive precipitation on surface transportation," Reliability Engineering and System Safety, Elsevier, vol. 203(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:219:y:2022:i:c:s0951832021006980. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.