IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v226y2022ics0951832022003441.html
   My bibliography  Save this article

Discovering injury severity risk factors in automobile crashes: A hybrid explainable AI framework for decision support

Author

Listed:
  • Amini, Mostafa
  • Bagheri, Ali
  • Delen, Dursun

Abstract

Millions of car crashes occur annually in the US, leaving tens of thousands of deaths and many more severe injuries. Thus, understanding the most impactful contributors to severe injuries in automobile crashes and mitigating their effects are of great importance in traffic safety improvement. This paper develops a hybrid framework involving predictive analytics, explainable AI, and heuristic optimization techniques to investigate and explain the injury severity risk factors in automobile crashes. First, our framework examines various machine learning models to identify the one with the best prediction performance as the base model. Then, it utilizes two popular state-of-the-art explainable AI techniques from the literature (i.e., leave-one-covariate-out and TreeExplainer) and our proposed explanation method based on the variable neighborhood search procedure to construe the importance of the variables. Finally, by applying an information fusion technique, our approach identifies a unified ranking list of the most important variables contributing to severe car crash injuries. Transportation safety planners and policymakers can use our findings to reduce the severity of car accidents, improve traffic safety, and save many lives.

Suggested Citation

  • Amini, Mostafa & Bagheri, Ali & Delen, Dursun, 2022. "Discovering injury severity risk factors in automobile crashes: A hybrid explainable AI framework for decision support," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
  • Handle: RePEc:eee:reensy:v:226:y:2022:i:c:s0951832022003441
    DOI: 10.1016/j.ress.2022.108720
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022003441
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108720?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Krauss, Christopher & Do, Xuan Anh & Huck, Nicolas, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," European Journal of Operational Research, Elsevier, vol. 259(2), pages 689-702.
    2. Susana García-Herrero & Juan Diego Febres & Wafa Boulagouas & José Manuel Gutiérrez & Miguel Ángel Mariscal Saldaña, 2021. "Assessment of the Influence of Technology-Based Distracted Driving on Drivers’ Infractions and Their Subsequent Impact on Traffic Accidents Severity," IJERPH, MDPI, vol. 18(13), pages 1-15, July.
    3. Delen, Dursun & Zolbanin, Hamed M., 2018. "The analytics paradigm in business research," Journal of Business Research, Elsevier, vol. 90(C), pages 186-195.
    4. Gao, Lu & Lu, Pan & Ren, Yihao, 2021. "A deep learning approach for imbalanced crash data in predicting highway-rail grade crossings accidents," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    5. Jing Lei & Max G’Sell & Alessandro Rinaldo & Ryan J. Tibshirani & Larry Wasserman, 2018. "Distribution-Free Predictive Inference for Regression," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1094-1111, July.
    6. Stan Lipovetsky & Michael Conklin, 2001. "Analysis of regression in game theory approach," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 17(4), pages 319-330, October.
    7. Zhou, Xiaoyi & Lu, Pan & Zheng, Zijian & Tolliver, Denver & Keramati, Amin, 2020. "Accident Prediction Accuracy Assessment for Highway-Rail Grade Crossings Using Random Forest Algorithm Compared with Decision Tree," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    8. Giovanny Pillajo-Quijia & Blanca Arenas-Ramírez & Camino González-Fernández & Francisco Aparicio-Izquierdo, 2020. "Influential Factors on Injury Severity for Drivers of Light Trucks and Vans with Machine Learning Methods," Sustainability, MDPI, vol. 12(4), pages 1-28, February.
    9. Christopher Krauss & Anh Do & Nicolas Huck, 2017. "Deep neural networks, gradient-boosted trees, random forests: Statistical arbitrage on the S&P 500," Post-Print hal-01768895, HAL.
    10. Xiao Wen & Yuanchang Xie & Liming Jiang & Ziyuan Pu & Tingjian Ge, 2021. "Applications of machine learning methods in traffic crash severity modelling: current status and future directions," Transport Reviews, Taylor & Francis Journals, vol. 41(6), pages 855-879, November.
    11. Janssens, Jochen & Talarico, Luca & Sörensen, Kenneth, 2016. "A hybridised variable neighbourhood tabu search heuristic to increase security in a utility network," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 221-230.
    12. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    13. Khaleghei Ghosheh Balagh, Akram & Naderkhani, Farnoosh & Makis, Viliam, 2014. "Highway Accident Modeling and Forecasting in Winter," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 384-396.
    14. Xu, Chengcheng & Wang, Yong & Liu, Pan & Wang, Wei & Bao, Jie, 2018. "Quantitative risk assessment of freeway crash casualty using high-resolution traffic data," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 299-311.
    15. Chen, Tianyi & Wong, Yiik Diew & Shi, Xiupeng & Wang, Xueqin, 2022. "Optimized structure learning of Bayesian Network for investigating causation of vehicles’ on-road crashes," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    16. Lai, Xiangjing & Hao, Jin-Kao & Fu, Zhang-Hua & Yue, Dong, 2021. "Neighborhood decomposition based variable neighborhood search and tabu search for maximally diverse grouping," European Journal of Operational Research, Elsevier, vol. 289(3), pages 1067-1086.
    17. Aziemah Azhar & Noratiqah Mohd Ariff & Mohd Aftar Abu Bakar & Azzuhana Roslan, 2022. "Classification of Driver Injury Severity for Accidents Involving Heavy Vehicles with Decision Tree and Random Forest," Sustainability, MDPI, vol. 14(7), pages 1-19, March.
    18. Ryder, Benjamin & Dahlinger, Andre & Gahr, Bernhard & Zundritsch, Peter & Wortmann, Felix & Fleisch, Elgar, 2019. "Spatial prediction of traffic accidents with critical driving events – Insights from a nationwide field study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 611-626.
    19. Sebastian Bach & Alexander Binder & Grégoire Montavon & Frederick Klauschen & Klaus-Robert Müller & Wojciech Samek, 2015. "On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-46, July.
    20. Dong, Chunjiao & Nambisan, Shashi S. & Richards, Stephen H. & Ma, Zhuanglin, 2015. "Assessment of the effects of highway geometric design features on the frequency of truck involved crashes using bivariate regression," Transportation Research Part A: Policy and Practice, Elsevier, vol. 75(C), pages 30-41.
    21. Turan, Hasan Hüseyin & Atmis, Mahir & Kosanoglu, Fuat & Elsawah, Sondoss & Ryan, Michael J., 2020. "A risk-averse simulation-based approach for a joint optimization of workforce capacity, spare part stocks and scheduling priorities in maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Palar, Pramudita Satria & Zuhal, Lavi Rizki & Shimoyama, Koji, 2023. "Enhancing the explainability of regression-based polynomial chaos expansion by Shapley additive explanations," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    2. Ahmed, Abdulaziz & Topuz, Kazim & Moqbel, Murad & Abdulrashid, Ismail, 2024. "What makes accidents severe! explainable analytics framework with parameter optimization," European Journal of Operational Research, Elsevier, vol. 317(2), pages 425-436.
    3. Abdulrashid, Ismail & Zanjirani Farahani, Reza & Mammadov, Shamkhal & Khalafalla, Mohamed & Chiang, Wen-Chyuan, 2024. "Explainable artificial intelligence in transport Logistics: Risk analysis for road accidents," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 186(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
    2. Kentaro Imajo & Kentaro Minami & Katsuya Ito & Kei Nakagawa, 2020. "Deep Portfolio Optimization via Distributional Prediction of Residual Factors," Papers 2012.07245, arXiv.org.
    3. Fischer, Thomas G., 2018. "Reinforcement learning in financial markets - a survey," FAU Discussion Papers in Economics 12/2018, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    4. Moews, Ben & Ibikunle, Gbenga, 2020. "Predictive intraday correlations in stable and volatile market environments: Evidence from deep learning," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 547(C).
    5. Guillaume Coqueret & Tony Guida, 2020. "Training trees on tails with applications to portfolio choice," Post-Print hal-04144665, HAL.
    6. Zhou, Hao & Kalev, Petko S., 2019. "Algorithmic and high frequency trading in Asia-Pacific, now and the future," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 186-207.
    7. Alexander Jakob Dautel & Wolfgang Karl Härdle & Stefan Lessmann & Hsin-Vonn Seow, 2020. "Forex exchange rate forecasting using deep recurrent neural networks," Digital Finance, Springer, vol. 2(1), pages 69-96, September.
    8. Kriebel, Johannes & Stitz, Lennart, 2022. "Credit default prediction from user-generated text in peer-to-peer lending using deep learning," European Journal of Operational Research, Elsevier, vol. 302(1), pages 309-323.
    9. Mercadier, Mathieu & Lardy, Jean-Pierre, 2019. "Credit spread approximation and improvement using random forest regression," European Journal of Operational Research, Elsevier, vol. 277(1), pages 351-365.
    10. Jian Ni & Yue Xu, 2023. "Forecasting the Dynamic Correlation of Stock Indices Based on Deep Learning Method," Computational Economics, Springer;Society for Computational Economics, vol. 61(1), pages 35-55, January.
    11. Gillmann, Niels & Kim, Alisa, 2021. "Quantification of Economic Uncertainty: a deep learning approach," VfS Annual Conference 2021 (Virtual Conference): Climate Economics 242421, Verein für Socialpolitik / German Economic Association.
    12. Tony Guida & Guillaume Coqueret, 2019. "Ensemble Learning Applied to Quant Equity: Gradient Boosting in a Multifactor Framework," Post-Print hal-02311104, HAL.
    13. Guillaume Chevalier & Guillaume Coqueret & Thomas Raffinot, 2022. "Supervised portfolios," Post-Print hal-04144588, HAL.
    14. Ha, Youngmin & Zhang, Hai, 2020. "Algorithmic trading for online portfolio selection under limited market liquidity," European Journal of Operational Research, Elsevier, vol. 286(3), pages 1033-1051.
    15. Pushpendu Ghosh & Ariel Neufeld & Jajati Keshari Sahoo, 2020. "Forecasting directional movements of stock prices for intraday trading using LSTM and random forests," Papers 2004.10178, arXiv.org, revised Jun 2021.
    16. Elizabeth Fons & Paula Dawson & Xiao-jun Zeng & John Keane & Alexandros Iosifidis, 2020. "Evaluating data augmentation for financial time series classification," Papers 2010.15111, arXiv.org.
    17. Fabian Waldow & Matthias Schnaubelt & Christopher Krauss & Thomas Günter Fischer, 2021. "Machine Learning in Futures Markets," JRFM, MDPI, vol. 14(3), pages 1-14, March.
    18. Uddin, Ajim & Yu, Dantong, 2020. "Latent factor model for asset pricing," Journal of Behavioral and Experimental Finance, Elsevier, vol. 27(C).
    19. Pelin Ayranci & Phung Lai & Nhathai Phan & Han Hu & Alexander Kolinowski & David Newman & Deijing Dou, 2022. "OnML: an ontology-based approach for interpretable machine learning," Journal of Combinatorial Optimization, Springer, vol. 44(1), pages 770-793, August.
    20. Sun-Youn Shin & Han-Gyun Woo, 2022. "Energy Consumption Forecasting in Korea Using Machine Learning Algorithms," Energies, MDPI, vol. 15(13), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:226:y:2022:i:c:s0951832022003441. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.