IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v213y2021ics095183202100212x.html
   My bibliography  Save this article

A Big Data Analytics Method for the Evaluation of Ship - Ship Collision Risk reflecting Hydrometeorological Conditions

Author

Listed:
  • Zhang, Mingyang
  • Montewka, Jakub
  • Manderbacka, Teemu
  • Kujala, Pentti
  • Hirdaris, Spyros

Abstract

This paper presents a big data analytics method for the evaluation of ship-ship collision risk in real operational conditions. The approach makes use of big data from Automatic Identification System (AIS) and nowcast data corresponding to time-dependent traffic situations and hydro-meteorological conditions respectively. An Avoidance Behavior-based Collision Detection Model (ABCD-M) is introduced to identify potential collision scenarios and Collision Risk Indices (CRIs) are quantified when evasive actions are taken for each detected collision scenario in various voyages. The method is applied on Ro-Pax ships operating over 13 months of the ice-free period in the Gulf of Finland. Results indicate that collision risk estimates may be extremely diverse among voyages, and in 97.5% of potential collision scenarios the evasive actions are triggered only when risk is at 45% or more of its maximum value. The overall CRI for ships operating over the given area tends to be lower for adverse hydro-meteorological conditions. It is therefore concluded that the proposed method may assist with the (1) identification of critical scenarios in various voyages not currently accounted for by existing accident databases, (2) definition of commonly agreed risk criteria to set off alarms, (3) the estimation of risk profile over the life cycle of fleet operations.

Suggested Citation

  • Zhang, Mingyang & Montewka, Jakub & Manderbacka, Teemu & Kujala, Pentti & Hirdaris, Spyros, 2021. "A Big Data Analytics Method for the Evaluation of Ship - Ship Collision Risk reflecting Hydrometeorological Conditions," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
  • Handle: RePEc:eee:reensy:v:213:y:2021:i:c:s095183202100212x
    DOI: 10.1016/j.ress.2021.107674
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202100212X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107674?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Qing & Liu, Kezhong & Chang, Chia-Hsun & Yang, Zaili, 2020. "Realising advanced risk assessment of vessel traffic flows near offshore wind farms," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    2. Du, Lei & Goerlandt, Floris & Kujala, Pentti, 2020. "Review and analysis of methods for assessing maritime waterway risk based on non-accident critical events detected from AIS data," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    3. Christian, Robby & Kang, Hyun Gook, 2017. "Probabilistic risk assessment on maritime spent nuclear fuel transportation (Part II: Ship collision probability)," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 136-149.
    4. Goerlandt, Floris & Kujala, Pentti, 2011. "Traffic simulation based ship collision probability modeling," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 91-107.
    5. Rajagopal, 2014. "The Human Factors," Palgrave Macmillan Books, in: Architecting Enterprise, chapter 9, pages 225-249, Palgrave Macmillan.
    6. Ramos, M.A. & Thieme, Christoph A. & Utne, Ingrid B. & Mosleh, A., 2020. "Human-system concurrent task analysis for maritime autonomous surface ship operation and safety," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    7. Montewka, Jakub & Goerlandt, Floris & Innes-Jones, Gemma & Owen, Douglas & Hifi, Yasmine & Puisa, Romanas, 2017. "Enhancing human performance in ship operations by modifying global design factors at the design stage," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 283-300.
    8. Montewka, Jakub & Ehlers, Sören & Goerlandt, Floris & Hinz, Tomasz & Tabri, Kristjan & Kujala, Pentti, 2014. "A framework for risk assessment for maritime transportation systems—A case study for open sea collisions involving RoPax vessels," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 142-157.
    9. Mohit Kumar, 2020. "Measuring Pearson's correlation coefficient of fuzzy numbers with different membership functions under weakest t-norm," International Journal of Data Analysis Techniques and Strategies, Inderscience Enterprises Ltd, vol. 12(2), pages 172-186.
    10. Montewka, Jakub & Hinz, Tomasz & Kujala, Pentti & Matusiak, Jerzy, 2010. "Probability modelling of vessel collisions," Reliability Engineering and System Safety, Elsevier, vol. 95(5), pages 573-589.
    11. Cai, Wei & Zhao, Jingyi & Zhu, Ming, 2020. "A real time methodology of cluster-system theory-based reliability estimation using k-means clustering," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    12. Zhang, Weibin & Feng, Xinyu & Goerlandt, Floris & Liu, Qing, 2020. "Towards a Convolutional Neural Network model for classifying regional ship collision risk levels for waterway risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    13. Dinis, D. & Teixeira, A.P. & Guedes Soares, C., 2020. "Probabilistic approach for characterising the static risk of ships using Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    14. Talavera, Alejandro & Aguasca, Ricardo & Galván, Blas & Cacereño, Andrés, 2013. "Application of Dempster–Shafer theory for the quantification and propagation of the uncertainty caused by the use of AIS data," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 95-105.
    15. Giel Wiel & J. Dorp, 2011. "An oil outflow model for tanker collisions and groundings," Annals of Operations Research, Springer, vol. 187(1), pages 279-304, July.
    16. Jiang, Dan & Wu, Bing & Cheng, Zhiyou & Xue, Jie & van Gelder, P.H.A.J.M., 2021. "Towards a probabilistic model for estimation of grounding accidents in fluctuating backwater zone of the Three Gorges Reservoir," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    17. Goerlandt, Floris & Montewka, Jakub, 2015. "Maritime transportation risk analysis: Review and analysis in light of some foundational issues," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 115-134.
    18. Bye, Rolf J. & Aalberg, Asbjørn L., 2018. "Maritime navigation accidents and risk indicators: An exploratory statistical analysis using AIS data and accident reports," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 174-186.
    19. Kujala, P. & Hänninen, M. & Arola, T. & Ylitalo, J., 2009. "Analysis of the marine traffic safety in the Gulf of Finland," Reliability Engineering and System Safety, Elsevier, vol. 94(8), pages 1349-1357.
    20. Christian, Robby & Kang, Hyun Gook, 2017. "Probabilistic risk assessment on maritime spent nuclear fuel transportation—Part I: Transport cask damage probability," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 124-135.
    21. Hänninen, Maria & Kujala, Pentti, 2012. "Influences of variables on ship collision probability in a Bayesian belief network model," Reliability Engineering and System Safety, Elsevier, vol. 102(C), pages 27-40.
    22. Martins, Marcelo Ramos & Maturana, Marcos Coelho, 2013. "Application of Bayesian Belief networks to the human reliability analysis of an oil tanker operation focusing on collision accidents," Reliability Engineering and System Safety, Elsevier, vol. 110(C), pages 89-109.
    23. Zhang, D. & Yan, X.P. & Yang, Z.L. & Wall, A. & Wang, J., 2013. "Incorporation of formal safety assessment and Bayesian network in navigational risk estimation of the Yangtze River," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 93-105.
    24. Marcelo Ramos Martins & Marcos Coelho Maturana, 2010. "Human Error Contribution in Collision and Grounding of Oil Tankers," Risk Analysis, John Wiley & Sons, vol. 30(4), pages 674-698, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruponen, Pekka & Montewka, Jakub & Tompuri, Markus & Manderbacka, Teemu & Hirdaris, Spyros, 2022. "A framework for onboard assessment and monitoring of flooding risk due to open watertight doors for passenger ships," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    2. Rong, H. & Teixeira, A.P. & Guedes Soares, C., 2024. "A framework for ship abnormal behaviour detection and classification using AIS data," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    3. Zhang, Mingyang & Kujala, Pentti & Hirdaris, Spyros, 2022. "A machine learning method for the evaluation of ship grounding risk in real operational conditions," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    4. Rong, H. & Teixeira, A.P. & Guedes Soares, C., 2022. "Maritime traffic probabilistic prediction based on ship motion pattern extraction," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    5. Xin, Xuri & Liu, Kezhong & Loughney, Sean & Wang, Jin & Li, Huanhuan & Ekere, Nduka & Yang, Zaili, 2023. "Multi-scale collision risk estimation for maritime traffic in complex port waters," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    6. Liang, Maohan & Li, Huanhuan & Liu, Ryan Wen & Lam, Jasmine Siu Lee & Yang, Zaili, 2024. "PiracyAnalyzer: Spatial temporal patterns analysis of global piracy incidents," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    7. Gao, Dawei & Zhu, Yongsheng & Yan, Ke & Soares, C. Guedes, 2024. "Deep learning–based framework for regional risk assessment in a multi–ship encounter situation based on the transformer network," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    8. Zyczkowski, Marcin & Szlapczynski, Rafal, 2023. "Collision risk-informed weather routing for sailboats," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    9. Antão, P. & Sun, S. & Teixeira, A.P. & Guedes Soares, C., 2023. "Quantitative assessment of ship collision risk influencing factors from worldwide accident and fleet data," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    10. Zvyagina, Tatiana & Zvyagin, Petr, 2022. "A model of multi-objective route optimization for a vessel in drifting ice," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    11. Du, Lei & Banda, Osiris A. Valdez & Huang, Yamin & Goerlandt, Floris & Kujala, Pentti & Zhang, Weibin, 2021. "An empirical ship domain based on evasive maneuver and perceived collision risk," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    12. Mauro, Francesco & Vassalos, Dracos & Paterson, Donald, 2022. "Critical damages identification in a multi-level damage stability assessment framework for passenger ships," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    13. Zhang, Jinfen & Liu, Jiongjiong & Hirdaris, Spyros & Zhang, Mingyang & Tian, Wuliu, 2023. "An interpretable knowledge-based decision support method for ship collision avoidance using AIS data," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    14. Zhang, Mingyang & Zhang, Di & Fu, Shanshan & Kujala, Pentti & Hirdaris, Spyros, 2022. "A predictive analytics method for maritime traffic flow complexity estimation in inland waterways," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    15. Gao, Dawei & Zhu, Yongsheng & Guedes Soares, C., 2023. "Uncertainty modelling and dynamic risk assessment for long-sequence AIS trajectory based on multivariate Gaussian Process," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    16. VanDerHorn, Eric & Wang, Zhenghua & Mahadevan, Sankaran, 2022. "Towards a digital twin approach for vessel-specific fatigue damage monitoring and prognosis," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    17. Mazurek, J. & Lu, L. & Krata, P. & Montewka, J. & Krata, H. & Kujala, P., 2022. "An updated method identifying collision-prone locations for ships. A case study for oil tankers navigating in the Gulf of Finland," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    18. Gil, Mateusz & Kozioł, Paweł & Wróbel, Krzysztof & Montewka, Jakub, 2022. "Know your safety indicator – A determination of merchant vessels Bow Crossing Range based on big data analytics," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    19. Xin, Xuri & Liu, Kezhong & Loughney, Sean & Wang, Jin & Yang, Zaili, 2023. "Maritime traffic clustering to capture high-risk multi-ship encounters in complex waters," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    20. Cheng, Tingting & Veitch, Erik A. & Utne, Ingrid Bouwer & Ramos, Marilia A. & Mosleh, Ali & Alsos, Ole Andreas & Wu, Bing, 2024. "Analysis of human errors in human-autonomy collaboration in autonomous ships operations through shore control experimental data," Reliability Engineering and System Safety, Elsevier, vol. 246(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silveira, P. & Teixeira, A.P. & Figueira, J.R. & Guedes Soares, C., 2021. "A multicriteria outranking approach for ship collision risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    2. Yu, Qing & Teixeira, Ângelo Palos & Liu, Kezhong & Rong, Hao & Guedes Soares, Carlos, 2021. "An integrated dynamic ship risk model based on Bayesian Networks and Evidential Reasoning," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Rong, H. & Teixeira, A.P. & Guedes Soares, C., 2021. "Spatial correlation analysis of near ship collision hotspots with local maritime traffic characteristics," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    4. Murray, Brian & Perera, Lokukaluge Prasad, 2021. "An AIS-based deep learning framework for regional ship behavior prediction," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Montewka, Jakub & Manderbacka, Teemu & Ruponen, Pekka & Tompuri, Markus & Gil, Mateusz & Hirdaris, Spyros, 2022. "Accident susceptibility index for a passenger ship-a framework and case study," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    6. Xin, Xuri & Liu, Kezhong & Yang, Zaili & Zhang, Jinfen & Wu, Xiaolie, 2021. "A probabilistic risk approach for the collision detection of multi-ships under spatiotemporal movement uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    7. Mazurek, J. & Lu, L. & Krata, P. & Montewka, J. & Krata, H. & Kujala, P., 2022. "An updated method identifying collision-prone locations for ships. A case study for oil tankers navigating in the Gulf of Finland," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    8. Cai, Mingyou & Zhang, Jinfen & Zhang, Di & Yuan, Xiaoli & Soares, C. Guedes, 2021. "Collision risk analysis on ferry ships in Jiangsu Section of the Yangtze River based on AIS data," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    9. Ung, S.T., 2021. "Navigation Risk estimation using a modified Bayesian Network modeling-a case study in Taiwan," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    10. Wu, Bing & Yip, Tsz Leung & Yan, Xinping & Guedes Soares, C., 2022. "Review of techniques and challenges of human and organizational factors analysis in maritime transportation," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    11. Rong, H. & Teixeira, A.P. & Guedes Soares, C., 2022. "Maritime traffic probabilistic prediction based on ship motion pattern extraction," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    12. Zhang, Mingyang & Zhang, Di & Fu, Shanshan & Kujala, Pentti & Hirdaris, Spyros, 2022. "A predictive analytics method for maritime traffic flow complexity estimation in inland waterways," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    13. Szlapczynski, Rafal & Szlapczynska, Joanna, 2021. "A ship domain-based model of collision risk for near-miss detection and Collision Alert Systems," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    14. Liu, Kezhong & Yu, Qing & Yang, Zhisen & Wan, Chengpeng & Yang, Zaili, 2022. "BN-based port state control inspection for Paris MoU: New risk factors and probability training using big data," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    15. Dinis, D. & Teixeira, A.P. & Guedes Soares, C., 2020. "Probabilistic approach for characterising the static risk of ships using Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    16. Gino J. Lim & Jaeyoung Cho & Selim Bora & Taofeek Biobaku & Hamid Parsaei, 2018. "Models and computational algorithms for maritime risk analysis: a review," Annals of Operations Research, Springer, vol. 271(2), pages 765-786, December.
    17. Jiang, Dan & Wu, Bing & Cheng, Zhiyou & Xue, Jie & van Gelder, P.H.A.J.M., 2021. "Towards a probabilistic model for estimation of grounding accidents in fluctuating backwater zone of the Three Gorges Reservoir," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    18. Carine Dominguez-Péry & Lakshmi Narasimha Raju Vuddaraju & Isabelle Corbett-Etchevers & Rana Tassabehji, 2021. "Reducing maritime accidents in ships by tackling human error: a bibliometric review and research agenda," Journal of Shipping and Trade, Springer, vol. 6(1), pages 1-32, December.
    19. Wang, Lei & Liu, Qing & Dong, Shiyu & Guedes Soares, C., 2022. "Selection of countermeasure portfolio for shipping safety with consideration of investment risk aversion," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    20. Sotiralis, P. & Ventikos, N.P. & Hamann, R. & Golyshev, P. & Teixeira, A.P., 2016. "Incorporation of human factors into ship collision risk models focusing on human centred design aspects," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 210-227.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:213:y:2021:i:c:s095183202100212x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.