IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v204y2020ics0951832020307018.html
   My bibliography  Save this article

Towards an innovative lubricant condition monitoring strategy for maintenance of ageing multi-unit systems

Author

Listed:
  • Wakiru, James
  • Pintelon, Liliane
  • Muchiri, Peter N.
  • Chemweno, Peter K.
  • Mburu, Stanley

Abstract

The high acquisition cost retained by replacement of ageing and deteriorating assets triggers operational life-extension for the systems. Subsequently, ageing effects like compromised performance and wear are introduced, adversely affecting system economics and performance. An integrated maintenance and spares strategy incorporating lubricant condition monitoring (LCM) under condition-based maintenance (CBM), corrective maintenance (CM) and preventive maintenance (PM) is proposed, to mitigate the ageing effect challenges. The study considers the lubricant not only as a monitored item, but as a spare like other repairable units, similarly deteriorating, and retaining different maintenance interventions. We link the lubricant degradation (iron and viscosity oil properties) and repairable units’ degradation and performance, by integrating rate-state interactions with imperfect maintenance to derive stochastic dependencies in the degradation model. The applicability of the proposed discrete event simulation model is illustrated for a geothermal drilling rig, whose performance (maintenance cost and lubricant volume) are derived. Results demonstrate system performance dependency on PM intervals and CM strategies for both the lubricant and the repairable units. The significance of LCM policy to maintenance and system performance is substantiated. The developed framework has widespread use in real-life and broader applications that include LCM in deriving maintenance decision support.

Suggested Citation

  • Wakiru, James & Pintelon, Liliane & Muchiri, Peter N. & Chemweno, Peter K. & Mburu, Stanley, 2020. "Towards an innovative lubricant condition monitoring strategy for maintenance of ageing multi-unit systems," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
  • Handle: RePEc:eee:reensy:v:204:y:2020:i:c:s0951832020307018
    DOI: 10.1016/j.ress.2020.107200
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832020307018
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.107200?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Poppe, Joeri & Basten, Rob J.I. & Boute, Robert N. & Lambrecht, Marc R., 2017. "Numerical study of inventory management under various maintenance policies," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 262-273.
    2. Wakiru, James M. & Pintelon, Liliane & Muchiri, Peter N. & Chemweno, Peter K., 2019. "A simulation-based optimization approach evaluating maintenance and spare parts demand interaction effects," International Journal of Production Economics, Elsevier, vol. 208(C), pages 329-342.
    3. Sequeira, C. & Pacheco, A. & Galego, P. & Gorbeña, E., 2019. "Analysis of the efficiency of wind turbine gearboxes using the temperature variable," Renewable Energy, Elsevier, vol. 135(C), pages 465-472.
    4. Mugnaini, Marco & Addabbo, Tommaso & Fort, Ada & Elmi, Alessandro & Landi, Elia & Vignoli, Valerio, 2020. "Magnetic brakes material characterization under accelerated testing conditions," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    5. Do, Phuc & Assaf, Roy & Scarf, Phil & Iung, Benoit, 2019. "Modelling and application of condition-based maintenance for a two-component system with stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 86-97.
    6. Shahraki, Ameneh Forouzandeh & Yadav, Om Prakash & Vogiatzis, Chrysafis, 2020. "Selective maintenance optimization for multi-state systems considering stochastically dependent components and stochastic imperfect maintenance actions," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    7. Alrabghi, Abdullah & Tiwari, Ashutosh, 2016. "A novel approach for modelling complex maintenance systems using discrete event simulation," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 160-170.
    8. Nguyen, Kim-Anh & Do, Phuc & Grall, Antoine, 2015. "Multi-level predictive maintenance for multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 83-94.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pan, Yan & Liang, Bin & Yang, Lei & Liu, Houde & Wu, Tonghai & Wang, Shuo, 2024. "Spatial-temporal modeling of oil condition monitoring: A review," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    2. Wakiru, James & Pintelon, Liliane & Muchiri, Peter N. & Chemweno, Peter K., 2021. "Integrated remanufacturing, maintenance and spares policies towards life extension of a multi-component system," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    3. González-Muñiz, Ana & Díaz, Ignacio & Cuadrado, Abel A. & García-Pérez, Diego, 2022. "Health indicator for machine condition monitoring built in the latent space of a deep autoencoder," Reliability Engineering and System Safety, Elsevier, vol. 224(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Heping & Zhu, Wenjin & Dieulle, Laurence & Deloux, Estelle, 2022. "Condition-based maintenance strategies for stochastically dependent systems using Nested Lévy copulas," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    2. Liu, Gehui & Chen, Shaokuan & Ho, Tinkin & Ran, Xinchen & Mao, Baohua & Lan, Zhen, 2022. "Optimum opportunistic maintenance schedule over variable horizons considering multi-stage degradation and dynamic strategy," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    3. Zhang, Nan & Cai, Kaiquan & Zhang, Jun & Wang, Tian, 2022. "A condition-based maintenance policy considering failure dependence and imperfect inspection for a two-component system," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    4. Shen, Jingyuan & Hu, Jiawen & Ma, Yizhong, 2020. "Two preventive replacement strategies for systems with protective auxiliary parts subject to degradation and economic dependence," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    5. Vu, Hai Canh & Do, Phuc & Fouladirad, Mitra & Grall, Antoine, 2020. "Dynamic opportunistic maintenance planning for multi-component redundant systems with various types of opportunities," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    6. Zhang, Nailong & Si, Wujun, 2020. "Deep reinforcement learning for condition-based maintenance planning of multi-component systems under dependent competing risks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    7. Aizpurua, J.I. & Catterson, V.M. & Papadopoulos, Y. & Chiacchio, F. & D'Urso, D., 2017. "Supporting group maintenance through prognostics-enhanced dynamic dependability prediction," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 171-188.
    8. Wang, Yukun & Li, Xiaopeng & Chen, Junyan & Liu, Yiliu, 2022. "A condition-based maintenance policy for multi-component systems subject to stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    9. Özgür-Ünlüakın, Demet & Türkali, Busenur, 2021. "Evaluation of proactive maintenance policies on a stochastically dependent hidden multi-component system using DBNs," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    10. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    11. Boardman, Nicholas T. & Sullivan, Kelly M., 2024. "Approximate dynamic programming for condition-based node deployment in a wireless sensor network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    12. Azizi, Fariba & Salari, Nooshin, 2023. "A novel condition-based maintenance framework for parallel manufacturing systems based on bivariate birth/birth–death processes," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    13. Zhang, Fengxia & Shen, Jingyuan & Liao, Haitao & Ma, Yizhong, 2021. "Optimal preventive maintenance policy for a system subject to two-phase imperfect inspections," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    14. Zhu, Mixin & Zhou, Xiaojun, 2023. "Hybrid opportunistic maintenance policy for serial-parallel multi-station manufacturing systems with spare part overlap," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    15. Phuc Do & Christophe Bérenguer, 2022. "Residual life-based importance measures for predictive maintenance decision-making," Journal of Risk and Reliability, , vol. 236(1), pages 98-113, February.
    16. Verbert, K. & De Schutter, B. & Babuška, R., 2017. "Timely condition-based maintenance planning for multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 310-321.
    17. Van der Auweraer, Sarah & Boute, Robert N. & Syntetos, Aris A., 2019. "Forecasting spare part demand with installed base information: A review," International Journal of Forecasting, Elsevier, vol. 35(1), pages 181-196.
    18. Mosayebi Omshi, E. & Grall, A., 2021. "Replacement and imperfect repair of deteriorating system: Study of a CBM policy and impact of repair efficiency," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    19. Lu, Biao & Zhou, Xiaojun, 2017. "Opportunistic preventive maintenance scheduling for serial-parallel multistage manufacturing systems with multiple streams of deterioration," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 116-127.
    20. Wu, Shaomin & Do, Phuc, 2017. "Editorial," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 1-3.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:204:y:2020:i:c:s0951832020307018. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.