IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v213y2019icp138-149.html
   My bibliography  Save this article

Forecasting spare part demand using service maintenance information

Author

Listed:
  • Van der Auweraer, Sarah
  • Boute, Robert

Abstract

We focus on the inventory management of critical spare parts that are used for service maintenance. These parts are commonly characterised by a large variety, an intermittent demand pattern and oftentimes a high shortage cost. Specialized service parts models focus on improving the availability of parts whilst limiting the investment in inventories. We develop a method to forecast the demand of these spare parts by linking it to the service maintenance policy. The demand of these parts originates from the maintenance activities that require their use, and is thus related to the number of machines in the field that make use of this part (known as the active installed base), in combination with the part's failure behaviour and the maintenance plan. We use this information to predict future demand. By tracking the active installed base and estimating the part failure behaviour, we provide a forecast of the distribution of the future spare parts demand during the upcoming lead time. This forecast is in turn used to manage inventories using a base-stock policy. Through a simulation experiment, we show that our method has the potential to improve the inventory-service trade-off, i.e., it can achieve a certain cycle service level with lower inventory levels compared to the traditional forecasting techniques for intermittent spare part demand. The magnitude of the improvement increases for spare parts that have a large installed base and for parts with longer replenishment lead times.

Suggested Citation

  • Van der Auweraer, Sarah & Boute, Robert, 2019. "Forecasting spare part demand using service maintenance information," International Journal of Production Economics, Elsevier, vol. 213(C), pages 138-149.
  • Handle: RePEc:eee:proeco:v:213:y:2019:i:c:p:138-149
    DOI: 10.1016/j.ijpe.2019.03.015
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S092552731930101X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2019.03.015?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pennings, Clint L.P. & van Dalen, Jan, 2017. "Integrated hierarchical forecasting," European Journal of Operational Research, Elsevier, vol. 263(2), pages 412-418.
    2. Dekker, Rommert & Pinçe, Çerağ & Zuidwijk, Rob & Jalil, Muhammad Naiman, 2013. "On the use of installed base information for spare parts logistics: A review of ideas and industry practice," International Journal of Production Economics, Elsevier, vol. 143(2), pages 536-545.
    3. Ritchie, E. & Wilcox, P., 1977. "Renewal theory forecasting for stock control," European Journal of Operational Research, Elsevier, vol. 1(2), pages 90-93, March.
    4. Poppe, Joeri & Basten, Rob J.I. & Boute, Robert N. & Lambrecht, Marc R., 2017. "Numerical study of inventory management under various maintenance policies," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 262-273.
    5. Syntetos, Aris A. & Boylan, John E., 2005. "The accuracy of intermittent demand estimates," International Journal of Forecasting, Elsevier, vol. 21(2), pages 303-314.
    6. Syntetos, Aris A. & Nikolopoulos, Konstantinos & Boylan, John E. & Fildes, Robert & Goodwin, Paul, 2009. "The effects of integrating management judgement into intermittent demand forecasts," International Journal of Production Economics, Elsevier, vol. 118(1), pages 72-81, March.
    7. A A Syntetos & J E Boylan & S M Disney, 2009. "Forecasting for inventory planning: a 50-year review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 149-160, May.
    8. Romeijnders, Ward & Teunter, Ruud & van Jaarsveld, Willem, 2012. "A two-step method for forecasting spare parts demand using information on component repairs," European Journal of Operational Research, Elsevier, vol. 220(2), pages 386-393.
    9. Xiao-Sheng Si & Zheng-Xin Zhang & Chang-Hua Hu, 2017. "An Adaptive Spare Parts Demand Forecasting Method Based on Degradation Modeling," Springer Series in Reliability Engineering, in: Data-Driven Remaining Useful Life Prognosis Techniques, chapter 0, pages 405-417, Springer.
    10. M N Jalil & R A Zuidwijk & M Fleischmann & Jo A E E van Nunen, 2011. "Spare parts logistics and installed base information," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 442-457, March.
    11. Wang, Wenbin & Syntetos, Aris A., 2011. "Spare parts demand: Linking forecasting to equipment maintenance," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 47(6), pages 1194-1209.
    12. Hong, Yili, 2013. "On computing the distribution function for the Poisson binomial distribution," Computational Statistics & Data Analysis, Elsevier, vol. 59(C), pages 41-51.
    13. Syntetos, Aris A. & Zied Babai, M. & Gardner, Everette S., 2015. "Forecasting intermittent inventory demands: simple parametric methods vs. bootstrapping," Journal of Business Research, Elsevier, vol. 68(8), pages 1746-1752.
    14. Zied Jemai & M. Hasni & M.S. Aguir & Mohamed Zied Babai, 2018. "Spare parts demand forecasting: a review on bootstrapping methods," Post-Print hal-01742198, HAL.
    15. Van der Auweraer, Sarah & Boute, Robert N. & Syntetos, Aris A., 2019. "Forecasting spare part demand with installed base information: A review," International Journal of Forecasting, Elsevier, vol. 35(1), pages 181-196.
    16. Syntetos, Aris A. & Boylan, John E., 2006. "On the stock control performance of intermittent demand estimators," International Journal of Production Economics, Elsevier, vol. 103(1), pages 36-47, September.
    17. Syntetos, Aris A. & Nikolopoulos, Konstantinos & Boylan, John E., 2010. "Judging the judges through accuracy-implication metrics: The case of inventory forecasting," International Journal of Forecasting, Elsevier, vol. 26(1), pages 134-143, January.
    18. Richard Barlow & Larry Hunter, 1960. "Optimum Preventive Maintenance Policies," Operations Research, INFORMS, vol. 8(1), pages 90-100, February.
    19. R H Teunter & L Duncan, 2009. "Forecasting intermittent demand: a comparative study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(3), pages 321-329, March.
    20. Xiao Liu & Loon Ching Tang, 2016. "Reliability analysis and spares provisioning for repairable systems with dependent failure processes and a time-varying installed base," IISE Transactions, Taylor & Francis Journals, vol. 48(1), pages 43-56, January.
    21. A H C Eaves & B G Kingsman, 2004. "Forecasting for the ordering and stock-holding of spare parts," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 55(4), pages 431-437, April.
    22. Gardner, Everette Jr., 2006. "Exponential smoothing: The state of the art--Part II," International Journal of Forecasting, Elsevier, vol. 22(4), pages 637-666.
    23. Xiao-Sheng Si & Zheng-Xin Zhang & Chang-Hua Hu, 2017. "Data-Driven Remaining Useful Life Prognosis Techniques," Springer Series in Reliability Engineering, Springer, number 978-3-662-54030-5, March.
    24. Bacchetti, Andrea & Saccani, Nicola, 2012. "Spare parts classification and demand forecasting for stock control: Investigating the gap between research and practice," Omega, Elsevier, vol. 40(6), pages 722-737.
    25. Wang, Wenbin, 2011. "A joint spare part and maintenance inspection optimisation model using the Delay-Time concept," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1535-1541.
    26. Babai, M. Zied & Ali, Mohammad M. & Nikolopoulos, Konstantinos, 2012. "Impact of temporal aggregation on stock control performance of intermittent demand estimators: Empirical analysis," Omega, Elsevier, vol. 40(6), pages 713-721.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Van der Auweraer, Sarah & Zhu, Sha & Boute, Robert N., 2021. "The value of installed base information for spare part inventory control," International Journal of Production Economics, Elsevier, vol. 239(C).
    2. Shi, Zhenyang & Liu, Shaoxuan, 2020. "Optimal inventory control and design refresh selection in managing part obsolescence," European Journal of Operational Research, Elsevier, vol. 287(1), pages 133-144.
    3. Amniattalab, Ayda & Frenk, J.B.G. & Hekimoğlu, Mustafa, 2023. "On spare parts demand and the installed base concept: A theoretical approach," International Journal of Production Economics, Elsevier, vol. 266(C).
    4. Pinçe, Çerağ & Turrini, Laura & Meissner, Joern, 2021. "Intermittent demand forecasting for spare parts: A Critical review," Omega, Elsevier, vol. 105(C).
    5. Voorberg, S. & van Jaarsveld, W. & Eshuis, R. & van Houtum, G.J., 2023. "Information acquisition for service contract quotations made by repair shops," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1166-1177.
    6. Dinis, Duarte & Barbosa-Póvoa, Ana & Teixeira, Ângelo Palos, 2022. "Enhancing capacity planning through forecasting: An integrated tool for maintenance of complex product systems," International Journal of Forecasting, Elsevier, vol. 38(1), pages 178-192.
    7. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    8. Shuai Zhang & Kai Huang & Yufei Yuan, 2021. "Spare Parts Inventory Management: A Literature Review," Sustainability, MDPI, vol. 13(5), pages 1-23, February.
    9. Omar, Haytham & Klibi, Walid & Babai, M. Zied & Ducq, Yves, 2023. "Basket data-driven approach for omnichannel demand forecasting," International Journal of Production Economics, Elsevier, vol. 257(C).
    10. Robert B. Handfield & James Aitken & Neil Turner & Tillmann Boehme & Cecil Bozarth, 2022. "Assessing Adoption Factors for Additive Manufacturing: Insights from Case Studies," Logistics, MDPI, vol. 6(2), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Van der Auweraer, Sarah & Boute, Robert N. & Syntetos, Aris A., 2019. "Forecasting spare part demand with installed base information: A review," International Journal of Forecasting, Elsevier, vol. 35(1), pages 181-196.
    2. Pinçe, Çerağ & Turrini, Laura & Meissner, Joern, 2021. "Intermittent demand forecasting for spare parts: A Critical review," Omega, Elsevier, vol. 105(C).
    3. Van der Auweraer, Sarah & Zhu, Sha & Boute, Robert N., 2021. "The value of installed base information for spare part inventory control," International Journal of Production Economics, Elsevier, vol. 239(C).
    4. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    5. Hu, Qiwei & Boylan, John E. & Chen, Huijing & Labib, Ashraf, 2018. "OR in spare parts management: A review," European Journal of Operational Research, Elsevier, vol. 266(2), pages 395-414.
    6. Zhu, Sha & Dekker, Rommert & van Jaarsveld, Willem & Renjie, Rex Wang & Koning, Alex J., 2017. "An improved method for forecasting spare parts demand using extreme value theory," European Journal of Operational Research, Elsevier, vol. 261(1), pages 169-181.
    7. Petropoulos, Fotios & Wang, Xun & Disney, Stephen M., 2019. "The inventory performance of forecasting methods: Evidence from the M3 competition data," International Journal of Forecasting, Elsevier, vol. 35(1), pages 251-265.
    8. Zhu, Sha & Jaarsveld, Willem van & Dekker, Rommert, 2020. "Spare parts inventory control based on maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    9. Babai, Zied & Boylan, John E. & Kolassa, Stephan & Nikolopoulos, Konstantinos, 2016. "Supply chain forecasting: Theory, practice, their gap and the futureAuthor-Name: Syntetos, Aris A," European Journal of Operational Research, Elsevier, vol. 252(1), pages 1-26.
    10. Syntetos, Aris A. & Zied Babai, M. & Gardner, Everette S., 2015. "Forecasting intermittent inventory demands: simple parametric methods vs. bootstrapping," Journal of Business Research, Elsevier, vol. 68(8), pages 1746-1752.
    11. Kourentzes, Nikolaos, 2014. "On intermittent demand model optimisation and selection," International Journal of Production Economics, Elsevier, vol. 156(C), pages 180-190.
    12. Pennings, Clint L.P. & van Dalen, Jan & van der Laan, Erwin A., 2017. "Exploiting elapsed time for managing intermittent demand for spare parts," European Journal of Operational Research, Elsevier, vol. 258(3), pages 958-969.
    13. Prak, Derk & Teunter, Rudolf & Babai, M. Z. & Syntetos, A. A. & Boylan, D, 2018. "Forecasting and Inventory Control with Compound Poisson Demand Using Periodic Demand Data," Research Report 2018010, University of Groningen, Research Institute SOM (Systems, Organisations and Management).
    14. Dinis, Duarte & Barbosa-Póvoa, Ana & Teixeira, Ângelo Palos, 2022. "Enhancing capacity planning through forecasting: An integrated tool for maintenance of complex product systems," International Journal of Forecasting, Elsevier, vol. 38(1), pages 178-192.
    15. Li, Chongshou & Lim, Andrew, 2018. "A greedy aggregation–decomposition method for intermittent demand forecasting in fashion retailing," European Journal of Operational Research, Elsevier, vol. 269(3), pages 860-869.
    16. Hasni, M. & Aguir, M.S. & Babai, M.Z. & Jemai, Z., 2019. "On the performance of adjusted bootstrapping methods for intermittent demand forecasting," International Journal of Production Economics, Elsevier, vol. 216(C), pages 145-153.
    17. Babai, M.Z. & Ali, M.M. & Boylan, J.E. & Syntetos, A.A., 2013. "Forecasting and inventory performance in a two-stage supply chain with ARIMA(0,1,1) demand: Theory and empirical analysis," International Journal of Production Economics, Elsevier, vol. 143(2), pages 463-471.
    18. Tian, Xin & Wang, Haoqing & E, Erjiang, 2021. "Forecasting intermittent demand for inventory management by retailers: A new approach," Journal of Retailing and Consumer Services, Elsevier, vol. 62(C).
    19. Babai, M. Zied & Ali, Mohammad M. & Nikolopoulos, Konstantinos, 2012. "Impact of temporal aggregation on stock control performance of intermittent demand estimators: Empirical analysis," Omega, Elsevier, vol. 40(6), pages 713-721.
    20. Kourentzes, Nikolaos & Trapero, Juan R. & Barrow, Devon K., 2020. "Optimising forecasting models for inventory planning," International Journal of Production Economics, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:213:y:2019:i:c:p:138-149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.