IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v199y2020ics0951832019303655.html
   My bibliography  Save this article

A general framework for dependability modelling coupling discrete-event and time-driven simulation

Author

Listed:
  • Chiacchio, Ferdinando
  • Iacono, Alessandra
  • Compagno, Lucio
  • D'Urso, Diego

Abstract

Analysis of complex failure scenarios and mitigation procedures of an industrial plant is one of the most important activity for the safety of the factory, the personnel and the surrounding areas. The dependability assessment of such systems is fulfilled by risk experts who, adopting well-known Reliability, Availability, Maintenance and Safety (RAMS) techniques, design and solve the stochastic failure model of the system. Traditional techniques like Fault Tree Analysis (FTA) or Reliability Block Diagrams (RBD) are of easy implementation but unrealistic, due to their simplified hypotheses that assume the components malfunction to be independent from each other and from the system working conditions.

Suggested Citation

  • Chiacchio, Ferdinando & Iacono, Alessandra & Compagno, Lucio & D'Urso, Diego, 2020. "A general framework for dependability modelling coupling discrete-event and time-driven simulation," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:reensy:v:199:y:2020:i:c:s0951832019303655
    DOI: 10.1016/j.ress.2020.106904
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832019303655
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.106904?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Mengfei & Zeng, Zhiguo & Zio, Enrico & Kang, Rui & Chen, Ying, 2018. "A stochastic hybrid systems model of common-cause failures of degrading components," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 159-170.
    2. Merle, G. & Roussel, J.-M. & Lesage, J.-J., 2011. "Algebraic determination of the structure function of Dynamic Fault Trees," Reliability Engineering and System Safety, Elsevier, vol. 96(2), pages 267-277.
    3. Manno, G. & Chiacchio, F. & Compagno, L. & D'Urso, D. & Trapani, N., 2014. "Conception of Repairable Dynamic Fault Trees and resolution by the use of RAATSS, a Matlab® toolbox based on the ATS formalism," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 250-262.
    4. Gascard, Eric & Simeu-Abazi, Zineb, 2018. "Quantitative Analysis of Dynamic Fault Trees by means of Monte Carlo Simulations: Event-Driven Simulation Approach," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 487-504.
    5. Aizpurua, J.I. & Catterson, V.M. & Papadopoulos, Y. & Chiacchio, F. & D'Urso, D., 2017. "Supporting group maintenance through prognostics-enhanced dynamic dependability prediction," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 171-188.
    6. Durga Rao, K. & Gopika, V. & Sanyasi Rao, V.V.S. & Kushwaha, H.S. & Verma, A.K. & Srividya, A., 2009. "Dynamic fault tree analysis using Monte Carlo simulation in probabilistic safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 872-883.
    7. Babykina, Génia & Brînzei, Nicolae & Aubry, Jean-François & Deleuze, Gilles, 2016. "Modeling and simulation of a controlled steam generator in the context of dynamic reliability using a Stochastic Hybrid Automaton," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 115-136.
    8. Chiacchio, F. & D’Urso, D. & Manno, G. & Compagno, L., 2016. "Stochastic hybrid automaton model of a multi-state system with aging: Reliability assessment and design consequences," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 1-13.
    9. Chiacchio, Ferdinando & D’Urso, Diego & Famoso, Fabio & Brusca, Sebastian & Aizpurua, Jose Ignacio & Catterson, Victoria M., 2018. "On the use of dynamic reliability for an accurate modelling of renewable power plants," Energy, Elsevier, vol. 151(C), pages 605-621.
    10. Chiacchio, F. & Compagno, L. & D'Urso, D. & Manno, G. & Trapani, N., 2011. "Dynamic fault trees resolution: A conscious trade-off between analytical and simulative approaches," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1515-1526.
    11. Liu, Jie & Zio, Enrico, 2017. "System dynamic reliability assessment and failure prognostics," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 21-36.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Jintao & Gui, Maolei & Ding, Rui & Dai, Tao & Zheng, Mengyan & Men, Xinhong & Meng, Fanpeng & Yu, Tao & Sui, Yang, 2023. "A new approach for dynamic reliability analysis of reactor protection system for HPR1000," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    2. Famoso, Fabio & Brusca, Sebastian & D'Urso, Diego & Galvagno, Antonio & Chiacchio, Ferdinando, 2020. "A novel hybrid model for the estimation of energy conversion in a wind farm combining wake effects and stochastic dependability," Applied Energy, Elsevier, vol. 280(C).
    3. Firouzi, Mohsen & Samimi, Abouzar & Salami, Abolfazl, 2022. "Reliability evaluation of a composite power system in the presence of renewable generations," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    4. Xu, Jinjin & Wang, Rongxi & Liang, Zeming & Liu, Pengpeng & Gao, Jianmin & Wang, Zhen, 2023. "Physics-guided, data-refined fault root cause tracing framework for complex electromechanical system," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    5. Zhou, Siwei & Ye, Luyao & Xiong, Shengwu & Xiang, Jianwen, 2022. "Reliability analysis of dynamic fault trees with Priority-AND gates based on irrelevance coverage model," Reliability Engineering and System Safety, Elsevier, vol. 224(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raoni, Rafael & Secchi, Argimiro R., 2019. "Procedures to model and solve probabilistic dynamic system problems," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    2. Chiacchio, Ferdinando & D’Urso, Diego & Famoso, Fabio & Brusca, Sebastian & Aizpurua, Jose Ignacio & Catterson, Victoria M., 2018. "On the use of dynamic reliability for an accurate modelling of renewable power plants," Energy, Elsevier, vol. 151(C), pages 605-621.
    3. Dong, Zhe & Li, Bowen & Li, Junyi & Huang, Xiaojin & Zhang, Zuoyi, 2022. "Online reliability assessment of energy systems based on a high-order extended-state-observer with application to nuclear reactors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Gascard, Eric & Simeu-Abazi, Zineb, 2018. "Quantitative Analysis of Dynamic Fault Trees by means of Monte Carlo Simulations: Event-Driven Simulation Approach," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 487-504.
    5. Chemweno, Peter & Pintelon, Liliane & Muchiri, Peter Nganga & Van Horenbeek, Adriaan, 2018. "Risk assessment methodologies in maintenance decision making: A review of dependability modelling approaches," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 64-77.
    6. Xu, Jintao & Gui, Maolei & Ding, Rui & Dai, Tao & Zheng, Mengyan & Men, Xinhong & Meng, Fanpeng & Yu, Tao & Sui, Yang, 2023. "A new approach for dynamic reliability analysis of reactor protection system for HPR1000," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    7. Chiacchio, F. & D’Urso, D. & Manno, G. & Compagno, L., 2016. "Stochastic hybrid automaton model of a multi-state system with aging: Reliability assessment and design consequences," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 1-13.
    8. Cheng, Ruijun & Cheng, Yu & Chen, Dewang & Song, Haifeng, 2021. "Online quantitative safety monitoring approach for unattended train operation system considering stochastic factors," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. Han Zhang & Hanjie Yuan & Gengfeng Li & Yanling Lin, 2018. "Quantitative Resilience Assessment under a Tri-Stage Framework for Power Systems," Energies, MDPI, vol. 11(6), pages 1-23, June.
    10. Sejin Baek & Gyunyoung Heo, 2021. "Application of Dynamic Fault Tree Analysis to Prioritize Electric Power Systems in Nuclear Power Plants," Energies, MDPI, vol. 14(14), pages 1-17, July.
    11. Ferdinando Chiacchio & Fabio Famoso & Diego D’Urso & Luca Cedola, 2019. "Performance and Economic Assessment of a Grid-Connected Photovoltaic Power Plant with a Storage System: A Comparison between the North and the South of Italy," Energies, MDPI, vol. 12(12), pages 1-25, June.
    12. Mi, Jinhua & Li, Yan-Feng & Yang, Yuan-Jian & Peng, Weiwen & Huang, Hong-Zhong, 2016. "Reliability assessment of complex electromechanical systems under epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 1-15.
    13. Ge, Daochuan & Lin, Meng & Yang, Yanhua & Zhang, Ruoxing & Chou, Qiang, 2015. "Quantitative analysis of dynamic fault trees using improved Sequential Binary Decision Diagrams," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 289-299.
    14. Aslett, Louis J.M. & Nagapetyan, Tigran & Vollmer, Sebastian J., 2017. "Multilevel Monte Carlo for Reliability Theory," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 188-196.
    15. Ferdinando Chiacchio & Fabio Famoso & Diego D’Urso & Sebastian Brusca & Jose Ignacio Aizpurua & Luca Cedola, 2018. "Dynamic Performance Evaluation of Photovoltaic Power Plant by Stochastic Hybrid Fault Tree Automaton Model," Energies, MDPI, vol. 11(2), pages 1-22, January.
    16. Haiyue Yu & Xiaoyue Wu, 2021. "A method for transformation from dynamic fault tree to binary decision diagram," Journal of Risk and Reliability, , vol. 235(3), pages 416-430, June.
    17. Nguyen, T.P. Khanh & Beugin, Julie & Marais, Juliette, 2015. "Method for evaluating an extended Fault Tree to analyse the dependability of complex systems: Application to a satellite-based railway system," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 300-313.
    18. Aizpurua, J.I. & Catterson, V.M. & Papadopoulos, Y. & Chiacchio, F. & D'Urso, D., 2017. "Supporting group maintenance through prognostics-enhanced dynamic dependability prediction," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 171-188.
    19. Daochuan Ge & Ruoxing Zhang & Qiang Chou & Yanhua Yang, 2015. "Probabilistic model–based multi-integration formulas for quantifying a generalized minimal cut sequence," Journal of Risk and Reliability, , vol. 229(1), pages 73-82, February.
    20. Zhou, Siwei & Ye, Luyao & Xiong, Shengwu & Xiang, Jianwen, 2022. "Reliability analysis of dynamic fault trees with Priority-AND gates based on irrelevance coverage model," Reliability Engineering and System Safety, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:199:y:2020:i:c:s0951832019303655. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.