Conception of Repairable Dynamic Fault Trees and resolution by the use of RAATSS, a Matlab® toolbox based on the ATS formalism
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2013.09.002
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Codetta-Raiteri, Daniele, 2011. "Integrating several formalisms in order to increase Fault Trees' modeling power," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 534-544.
- Chiacchio, F. & Compagno, L. & D'Urso, D. & Manno, G. & Trapani, N., 2011. "Dynamic fault trees resolution: A conscious trade-off between analytical and simulative approaches," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1515-1526.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xu, Jintao & Gui, Maolei & Ding, Rui & Dai, Tao & Zheng, Mengyan & Men, Xinhong & Meng, Fanpeng & Yu, Tao & Sui, Yang, 2023. "A new approach for dynamic reliability analysis of reactor protection system for HPR1000," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Aslett, Louis J.M. & Nagapetyan, Tigran & Vollmer, Sebastian J., 2017. "Multilevel Monte Carlo for Reliability Theory," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 188-196.
- Chiacchio, Ferdinando & D’Urso, Diego & Famoso, Fabio & Brusca, Sebastian & Aizpurua, Jose Ignacio & Catterson, Victoria M., 2018. "On the use of dynamic reliability for an accurate modelling of renewable power plants," Energy, Elsevier, vol. 151(C), pages 605-621.
- Mi, Jinhua & Li, Yan-Feng & Yang, Yuan-Jian & Peng, Weiwen & Huang, Hong-Zhong, 2016. "Reliability assessment of complex electromechanical systems under epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 1-15.
- Gascard, Eric & Simeu-Abazi, Zineb, 2018. "Quantitative Analysis of Dynamic Fault Trees by means of Monte Carlo Simulations: Event-Driven Simulation Approach," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 487-504.
- Ferdinando Chiacchio & Fabio Famoso & Diego D’Urso & Sebastian Brusca & Jose Ignacio Aizpurua & Luca Cedola, 2018. "Dynamic Performance Evaluation of Photovoltaic Power Plant by Stochastic Hybrid Fault Tree Automaton Model," Energies, MDPI, vol. 11(2), pages 1-22, January.
- Aizpurua, J.I. & Catterson, V.M. & Papadopoulos, Y. & Chiacchio, F. & D'Urso, D., 2017. "Supporting group maintenance through prognostics-enhanced dynamic dependability prediction," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 171-188.
- Chiacchio, F. & D’Urso, D. & Manno, G. & Compagno, L., 2016. "Stochastic hybrid automaton model of a multi-state system with aging: Reliability assessment and design consequences," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 1-13.
- Chemweno, Peter & Pintelon, Liliane & Muchiri, Peter Nganga & Van Horenbeek, Adriaan, 2018. "Risk assessment methodologies in maintenance decision making: A review of dependability modelling approaches," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 64-77.
- Chiacchio, Ferdinando & Iacono, Alessandra & Compagno, Lucio & D'Urso, Diego, 2020. "A general framework for dependability modelling coupling discrete-event and time-driven simulation," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
- Dingqing Guo & Jinkai Wang & Jian Lin & Bing Zhang & Nou Yong & Dongqin Xia & Daochuan Ge, 2023. "An adapted component-connection method for building SBDD encoding a dynamic fault tree," Journal of Risk and Reliability, , vol. 237(6), pages 1163-1174, December.
- Liang, Zhenglin & Liu, Bin & Xie, Min & Parlikad, Ajith Kumar, 2020. "Condition-based maintenance for long-life assets with exposure to operational and environmental risks," International Journal of Production Economics, Elsevier, vol. 221(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Chemweno, Peter & Pintelon, Liliane & Muchiri, Peter Nganga & Van Horenbeek, Adriaan, 2018. "Risk assessment methodologies in maintenance decision making: A review of dependability modelling approaches," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 64-77.
- Chiacchio, Ferdinando & D’Urso, Diego & Famoso, Fabio & Brusca, Sebastian & Aizpurua, Jose Ignacio & Catterson, Victoria M., 2018. "On the use of dynamic reliability for an accurate modelling of renewable power plants," Energy, Elsevier, vol. 151(C), pages 605-621.
- Ge, Daochuan & Lin, Meng & Yang, Yanhua & Zhang, Ruoxing & Chou, Qiang, 2015. "Quantitative analysis of dynamic fault trees using improved Sequential Binary Decision Diagrams," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 289-299.
- Sejin Baek & Gyunyoung Heo, 2021. "Application of Dynamic Fault Tree Analysis to Prioritize Electric Power Systems in Nuclear Power Plants," Energies, MDPI, vol. 14(14), pages 1-17, July.
- Raoni, Rafael & Secchi, Argimiro R., 2019. "Procedures to model and solve probabilistic dynamic system problems," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
- Chiacchio, F. & Cacioppo, M. & D'Urso, D. & Manno, G. & Trapani, N. & Compagno, L., 2013. "A Weibull-based compositional approach for hierarchical dynamic fault trees," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 45-52.
- Chemweno, Peter & Pintelon, Liliane & Van Horenbeek, Adriaan & Muchiri, Peter, 2015. "Development of a risk assessment selection methodology for asset maintenance decision making: An analytic network process (ANP) approach," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 663-676.
- Son, Kwang Seop & Kim, Dong Hoon & Kim, Chang Hwoi & Kang, Hyun Gook, 2016. "Study on the systematic approach of Markov modeling for dependability analysis of complex fault-tolerant features with voting logics," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 44-57.
- Chiacchio, F. & D’Urso, D. & Manno, G. & Compagno, L., 2016. "Stochastic hybrid automaton model of a multi-state system with aging: Reliability assessment and design consequences," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 1-13.
- Chiacchio, Ferdinando & Iacono, Alessandra & Compagno, Lucio & D'Urso, Diego, 2020. "A general framework for dependability modelling coupling discrete-event and time-driven simulation," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
More about this item
Keywords
Availability; Failure gates; Adaptive Transitions System; First occurrence; Discrete event simulation;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:121:y:2014:i:c:p:250-262. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.