IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v158y2017icp246-253.html
   My bibliography  Save this article

Deriving a frequentist conservative confidence bound for probability of failure per demand for systems with different operational and test profiles

Author

Listed:
  • Bishop, Peter
  • Povyakalo, Andrey

Abstract

Reliability testing is typically used in demand-based systems (such as protection systems) to derive a confidence bound for a specific operational profile. To be realistic, the number of tests for each class of demand should be proportional to the demand frequency of the class. In practice, however, the actual operational profile may differ from that used during testing. This paper provides a means for estimating the confidence bound when the test profile differs from the profile used in actual operation. Based on this analysis the paper examines what bound can be claimed for different types of profile uncertainty and options for dealing with this uncertainty. We also show that the same conservative bound estimation equations can be applied to cases where different measures of software test coverage and operational profile are used.

Suggested Citation

  • Bishop, Peter & Povyakalo, Andrey, 2017. "Deriving a frequentist conservative confidence bound for probability of failure per demand for systems with different operational and test profiles," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 246-253.
  • Handle: RePEc:eee:reensy:v:158:y:2017:i:c:p:246-253
    DOI: 10.1016/j.ress.2016.08.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832016304124
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2016.08.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bishop, Peter & Bloomfield, Robin & Littlewood, Bev & Popov, Peter & Povyakalo, Andrey & Strigini, Lorenzo, 2014. "A conservative bound for the probability of failure of a 1-out-of-2 protection system with one hardware-only and one software-based protection train," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 61-68.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bishop, Peter & Povyakalo, Andrey, 2020. "A conservative confidence bound for the probability of failure on demand of a software-based system based on failure-free tests of its components," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    2. Pietrantuono, Roberto & Popov, Peter & Russo, Stefano, 2020. "Reliability assessment of service-based software under operational profile uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    3. Li, Meng & Sadoughi, Mohammadkazem & Hu, Zhen & Hu, Chao, 2020. "A hybrid Gaussian process model for system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 197(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yaguang Yang, 2019. "Test based safety-critical software reliability estimation using Bayesian method and flow network structure," Journal of Risk and Reliability, , vol. 233(5), pages 847-856, October.
    2. Bishop, Peter & Povyakalo, Andrey, 2020. "A conservative confidence bound for the probability of failure on demand of a software-based system based on failure-free tests of its components," Reliability Engineering and System Safety, Elsevier, vol. 203(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:158:y:2017:i:c:p:246-253. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.