IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v180y2018icp111-123.html
   My bibliography  Save this article

Modeling patterns for reliability assessment of safety instrumented systems

Author

Listed:
  • Meng, Huixing
  • Kloul, Leïla
  • Rauzy, Antoine

Abstract

Safety Instrumented Systems (SIS) act as crucial safety barriers for preventing hazardous accidents in the industrial systems. It is therefore of primary importance to study their reliability, i.e. eventually to design probabilistic reliability assessment models. SIS have common behaviors such as the periodic test policies to reveal the dangerous undetected failures. These common behaviors can be captured in models via modeling patterns. By reusing modeling patterns, the modeling process can be simplified and made more efficient.

Suggested Citation

  • Meng, Huixing & Kloul, Leïla & Rauzy, Antoine, 2018. "Modeling patterns for reliability assessment of safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 111-123.
  • Handle: RePEc:eee:reensy:v:180:y:2018:i:c:p:111-123
    DOI: 10.1016/j.ress.2018.06.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017314928
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.06.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hauge, S. & Hokstad, P. & HÃ¥brekke, S. & Lundteigen, M.A., 2016. "Common cause failures in safety-instrumented systems: Using field experience from the petroleum industry," Reliability Engineering and System Safety, Elsevier, vol. 151(C), pages 34-45.
    2. Longhi, Antonio Eduardo Bier & Pessoa, Artur Alves & Garcia, Pauli Adriano de Almada, 2015. "Multiobjective optimization of strategies for operation and testing of low-demand safety instrumented systems using a genetic algorithm and fault trees," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 525-538.
    3. Cai, Baoping & Xie, Min & Liu, Yonghong & Liu, Yiliu & Feng, Qiang, 2018. "Availability-based engineering resilience metric and its corresponding evaluation methodology," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 216-224.
    4. Cai, Baoping & Liu, Yu & Fan, Qian, 2016. "A multiphase dynamic Bayesian networks methodology for the determination of safety integrity levels," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 105-115.
    5. Lundteigen, Mary Ann & Rausand, Marvin, 2008. "Spurious activation of safety instrumented systems in the oil and gas industry: Basic concepts and formulas," Reliability Engineering and System Safety, Elsevier, vol. 93(8), pages 1208-1217.
    6. Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2011. "Modeling safety instrumented systems with MooN voting architectures addressing system reconfiguration for testing," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 545-563.
    7. Brameret, P.-A. & Rauzy, A. & Roussel, J.-M., 2015. "Automated generation of partial Markov chain from high level descriptions," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 179-187.
    8. Kumar, Manoj & Verma, A.K. & Srividya, A., 2008. "Modeling demand rate and imperfect proof-test and analysis of their effect on system safety," Reliability Engineering and System Safety, Elsevier, vol. 93(11), pages 1720-1729.
    9. Hui Jin & Mary Ann Lundteigen & Marvin Rausand, 2012. "Uncertainty assessment of reliability estimates for safety-instrumented systems," Journal of Risk and Reliability, , vol. 226(6), pages 646-655, December.
    10. Liu, Yiliu & Rausand, Marvin, 2016. "Proof-testing strategies induced by dangerous detected failures of safety-instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 366-372.
    11. Rahimi, Maryam & Rausand, Marvin, 2013. "Monitoring human and organizational factors influencing common-cause failures of safety-instrumented system during the operational phase," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 10-17.
    12. Mullins, Joshua & Mahadevan, Sankaran, 2014. "Variable-fidelity model selection for stochastic simulation," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 40-52.
    13. Enrico Zio & Nicola Pedroni, 2010. "Reliability Estimation by Advanced Monte Carlo Simulation," Springer Series in Reliability Engineering, in: Javier Faulin & Angel A. Juan & Sebastián Martorell & José-Emmanuel Ramírez-Márquez (ed.), Simulation Methods for Reliability and Availability of Complex Systems, chapter 0, pages 3-39, Springer.
    14. Jigar, Abraham Almaw & Liu, Yiliu & Lundteigen, Mary Ann, 2016. "Spurious activation analysis of safety-instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 15-23.
    15. Cacheux, Pierre-Joseph & Collas, Stéphane & Dutuit, Yves & Folleau, Cyrille & Signoret, Jean-Pierre & Thomas, Philippe, 2013. "Assessment of the expected number and frequency of failures of periodically tested systems," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 61-70.
    16. Signoret, Jean-Pierre & Dutuit, Yves & Cacheux, Pierre-Joseph & Folleau, Cyrille & Collas, Stéphane & Thomas, Philippe, 2013. "Make your Petri nets understandable: Reliability block diagrams driven Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 61-75.
    17. Michel Batteux & Tatiana Prosvirnova & Antoine Rauzy, 2017. "AltaRica 3.0 assertions: The whys and wherefores," Journal of Risk and Reliability, , vol. 231(6), pages 691-700, December.
    18. Oliveira, Luiz Fernando & Abramovitch, Rafael Nelson, 2010. "Extension of ISA TR84.00.02 PFD equations to KooN architectures," Reliability Engineering and System Safety, Elsevier, vol. 95(7), pages 707-715.
    19. Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2009. "Modelling and optimization of proof testing policies for safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 838-854.
    20. Lipaczewski, Michael & Ortmeier, Frank & Prosvirnova, Tatiana & Rauzy, Antoine & Struck, Simon, 2015. "Comparison of modeling formalisms for Safety Analyses: SAML and AltaRica," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 191-199.
    21. A B Rauzy, 2008. "Guarded transition systems: A new states/events formalism for reliability studies," Journal of Risk and Reliability, , vol. 222(4), pages 495-505, December.
    22. Jin, Hui & Rausand, Marvin, 2014. "Reliability of safety-instrumented systems subject to partial testing and common-cause failures," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 146-151.
    23. Rauzy, Antoine & Blériot-Fabre, Chaire, 2015. "Towards a sound semantics for dynamic fault trees," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 184-191.
    24. Y Dutuit & A B Rauzy & J-P Signoret, 2008. "A snapshot of methods and tools to assess safety integrity levels of high-integrity protection systems," Journal of Risk and Reliability, , vol. 222(3), pages 371-379, September.
    25. Ruiz, Alejandra & Juez, Garazi & Espinoza, Huáscar & de la Vara, Jose Luis & Larrucea, Xabier, 2017. "Reuse of safety certification artefacts across standards and domains: A systematic approach," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 153-171.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Qianlin & Han, Jiaqi & Chen, Feng & Hu, Su & Yun, Cheng & Dou, Zhan & Yan, Tingjun & Yang, Guoan, 2024. "Modeling risk characterization networks for chemical processes based on multi-variate data," Energy, Elsevier, vol. 293(C).
    2. Wu, Shengnan & Zhang, Laibin & Zheng, Wenpei & Liu, Yiliu & Lundteigen, Mary Ann, 2019. "Reliability modeling of subsea SISs partial testing subject to delayed restoration," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    3. Xie, Lin & Lundteigen, Mary Ann & Liu, Yiliu, 2021. "Performance analysis of safety instrumented systems against cascading failures during prolonged demands," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Gouyon, David & Pétin, Jean-François & Cochard, Thomas & Devic, Catherine, 2020. "Architecture assessment for safety critical plant operation using reachability analysis of timed automata," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    5. Zhang, Aibo & Srivastav, Himanshu & Barros, Anne & Liu, Yiliu, 2021. "Study of testing and maintenance strategies for redundant final elements in SIS with imperfect detection of degraded state," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    6. Yuan, Shuaiqi & Cai, Jitao & Reniers, Genserik & Yang, Ming & Chen, Chao & Wu, Jiansong, 2022. "Safety barrier performance assessment by integrating computational fluid dynamics and evacuation modeling for toxic gas leakage scenarios," Reliability Engineering and System Safety, Elsevier, vol. 226(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Shengnan & Zhang, Laibin & Zheng, Wenpei & Liu, Yiliu & Lundteigen, Mary Ann, 2019. "Reliability modeling of subsea SISs partial testing subject to delayed restoration," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    2. Azizpour, Hooshyar & Lundteigen, Mary Ann, 2019. "Analysis of simplification in Markov-based models for performance assessment of Safety Instrumented System," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 252-260.
    3. Gabriel, Angelito & Ozansoy, Cagil & Shi, Juan, 2018. "Developments in SIL determination and calculation," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 148-161.
    4. Mechri, Walid & Simon, Christophe & BenOthman, Kamel, 2015. "Switching Markov chains for a holistic modeling of SIS unavailability," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 212-222.
    5. Qi, Meng & Kan, Yufeng & Li, Xun & Wang, Xiaoying & Zhao, Dongfeng & Moon, Il, 2020. "Spurious activation and operational integrity evaluation of redundant safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    6. Penttinen, Jussi-Pekka & Niemi, Arto & Gutleber, Johannes & Koskinen, Kari T. & Coatanéa, Eric & Laitinen, Jouko, 2019. "An open modelling approach for availability and reliability of systems," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 387-399.
    7. Alizadeh, Siamak & Sriramula, Srinivas, 2018. "Impact of common cause failure on reliability performance of redundant safety related systems subject to process demand," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 129-150.
    8. Innal, Fares & Lundteigen, Mary Ann & Liu, Yiliu & Barros, Anne, 2016. "PFDavg generalized formulas for SIS subject to partial and full periodic tests based on multi-phase Markov models," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 160-170.
    9. Innal, Fares & Dutuit, Yves & Chebila, Mourad, 2015. "Safety and operational integrity evaluation and design optimization of safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 32-50.
    10. Zhang, Aibo & Srivastav, Himanshu & Barros, Anne & Liu, Yiliu, 2021. "Study of testing and maintenance strategies for redundant final elements in SIS with imperfect detection of degraded state," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    11. Longhi, Antonio Eduardo Bier & Pessoa, Artur Alves & Garcia, Pauli Adriano de Almada, 2015. "Multiobjective optimization of strategies for operation and testing of low-demand safety instrumented systems using a genetic algorithm and fault trees," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 525-538.
    12. Chuan Wang & Yupeng Liu & Wen Hou & Chao Yu & Guorong Wang & Yuyan Zheng, 2021. "Reliability and availability modeling of Subsea Autonomous High Integrity Pressure Protection System with partial stroke test by Dynamic Bayesian," Journal of Risk and Reliability, , vol. 235(2), pages 268-281, April.
    13. Rachid Sal & Rachid Nait-Said & Mouloud Bourareche, 2017. "Dealing with uncertainty in effect analysis of test strategies on safety instrumented system performance," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1945-1958, November.
    14. Liu, Yiliu & Rausand, Marvin, 2016. "Proof-testing strategies induced by dangerous detected failures of safety-instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 366-372.
    15. Florent Brissaud & Anne Barros & Christophe Bérenguer, 2012. "Probability of failure on demand of safety systems: impact of partial test distribution," Journal of Risk and Reliability, , vol. 226(4), pages 426-436, August.
    16. Min Zhang & Zhijian Zhang & Ali Mosleh & Sijuan Chen, 2017. "Common cause failure model updating for risk monitoring in nuclear power plants based on alpha factor model," Journal of Risk and Reliability, , vol. 231(3), pages 209-220, June.
    17. Ding, Long & Wang, Hong & Jiang, Jin & Xu, Aidong, 2017. "SIL verification for SRS with diverse redundancy based on system degradation using reliability block diagram," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 170-187.
    18. Piriou, Pierre-Yves & Faure, Jean-Marc & Lesage, Jean-Jacques, 2017. "Generalized Boolean logic Driven Markov Processes: A powerful modeling framework for Model-Based Safety Analysis of dynamic repairable and reconfigurable systems," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 57-68.
    19. Liu, Yiliu & Rausand, Marvin, 2013. "Reliability effects of test strategies on safety-instrumented systems in different demand modes," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 235-243.
    20. Kloul, Leïla & Rauzy, Antoine, 2017. "Production trees: A new modeling methodology for production availability analyses," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 561-571.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:180:y:2018:i:c:p:111-123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.