IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v118y2013icp61-70.html
   My bibliography  Save this article

Assessment of the expected number and frequency of failures of periodically tested systems

Author

Listed:
  • Cacheux, Pierre-Joseph
  • Collas, Stéphane
  • Dutuit, Yves
  • Folleau, Cyrille
  • Signoret, Jean-Pierre
  • Thomas, Philippe

Abstract

The safety and reliability analysis of any system necessarily requires first to model its behavior or its failure logic, and second to assess its performance by using the previously chosen model. Among these performance indicators there is the failure frequency. In spite of its interest, it is not very often used, except in the standards devoted to the so-called functional safety, in which its genuine nature is not always made explicit. A sound method dedicated to the modeling and computing of the failure frequency of periodically tested systems is proposed in this paper. This type of systems comprises components with an availability curve which is discontinuous at deterministic instants. These discontinuities induce, in turn and at the same instants, frequency discontinuities. The impact of the latter on the overall value of the failure frequency is important, but largely unknown and therefore not taken into account in the safety and reliability area, in spite of the fact that it generally induces optimistic estimation, if no compensatory action is planned. The presented method is based on the notion of “critical state†and the use of advanced fault tree models (FT). The results obtained from these models are checked by using Monte Carlo simulation technique supported by equivalent Petri nets models (PN).

Suggested Citation

  • Cacheux, Pierre-Joseph & Collas, Stéphane & Dutuit, Yves & Folleau, Cyrille & Signoret, Jean-Pierre & Thomas, Philippe, 2013. "Assessment of the expected number and frequency of failures of periodically tested systems," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 61-70.
  • Handle: RePEc:eee:reensy:v:118:y:2013:i:c:p:61-70
    DOI: 10.1016/j.ress.2013.04.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832013001099
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2013.04.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vaurio, Jussi K., 2010. "Ideas and developments in importance measures and fault-tree techniques for reliability and risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 95(2), pages 99-107.
    2. F Innal & Y Dutuit & A Rauzy & J-P Signoret, 2010. "New insight into the average probability of failure on demand and the probability of dangerous failure per hour of safety instrumented systems," Journal of Risk and Reliability, , vol. 224(2), pages 75-86, June.
    3. Y Dutuit & A B Rauzy & J-P Signoret, 2008. "A snapshot of methods and tools to assess safety integrity levels of high-integrity protection systems," Journal of Risk and Reliability, , vol. 222(3), pages 371-379, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Chuan & Liu, Yupeng & Wang, Dongbo & Wang, Guorong & Wang, Dingya & Yu, Chao, 2021. "Reliability evaluation method based on dynamic fault diagnosis results: A case study of a seabed mud lifting system," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    2. Meng, Huixing & Kloul, Leïla & Rauzy, Antoine, 2018. "Modeling patterns for reliability assessment of safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 111-123.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Innal, Fares & Dutuit, Yves & Chebila, Mourad, 2015. "Safety and operational integrity evaluation and design optimization of safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 32-50.
    2. Liu, Yiliu & Rausand, Marvin, 2016. "Proof-testing strategies induced by dangerous detected failures of safety-instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 366-372.
    3. Hokstad, Per, 2014. "Demand rate and risk reduction for safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 12-20.
    4. Vaurio, Jussi K., 2011. "Importance measures in risk-informed decision making: Ranking, optimisation and configuration control," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1426-1436.
    5. Meng, Huixing & Kloul, Leïla & Rauzy, Antoine, 2018. "Modeling patterns for reliability assessment of safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 111-123.
    6. Alizadeh, Siamak & Sriramula, Srinivas, 2018. "Impact of common cause failure on reliability performance of redundant safety related systems subject to process demand," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 129-150.
    7. Jintao Liu & Keping Li & Wei Zheng & Jiebei Zhu, 2019. "An importance order analysis method for causes of railway signaling system hazards based on complex networks," Journal of Risk and Reliability, , vol. 233(4), pages 567-579, August.
    8. Innal, Fares & Lundteigen, Mary Ann & Liu, Yiliu & Barros, Anne, 2016. "PFDavg generalized formulas for SIS subject to partial and full periodic tests based on multi-phase Markov models," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 160-170.
    9. Dutuit, Yves & Rauzy, Antoine, 2015. "On the extension of Importance Measures to complex components," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 161-168.
    10. Jin, Hui & Lundteigen, Mary Ann & Rausand, Marvin, 2013. "New PFH-formulas for k-out-of-n:F-systems," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 112-118.
    11. Estecahandy, M. & Bordes, L. & Collas, S. & Paroissin, C., 2015. "Some acceleration methods for Monte Carlo simulation of rare events," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 296-310.
    12. Vaurio, Jussi K., 2016. "Importances of components and events in non-coherent systems and risk models," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 117-122.
    13. Liu, Yiliu & Rausand, Marvin, 2013. "Reliability effects of test strategies on safety-instrumented systems in different demand modes," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 235-243.
    14. Vaurio, J.K., 2011. "Importance measures for multi-phase missions," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 230-235.
    15. Reza Mikaeil & Sina Shaffiee Haghshenas & Zoheir Sedaghati, 2019. "Geotechnical risk evaluation of tunneling projects using optimization techniques (case study: the second part of Emamzade Hashem tunnel)," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 97(3), pages 1099-1113, July.
    16. Mohammad Majid Fouladgar Author_Email: & Abdolreza Yadani-Chamzini & Mohammad Hossein Basiri, 2011. "Risk Evaluation Of Tunnelling Projects By Fuzzy Topsis," International Conference on Management (ICM 2011) Proceeding 2011-087-331, Conference Master Resources.
    17. Dui, Hongyan & Si, Shubin & Wu, Shaomin & Yam, Richard C.M., 2017. "An importance measure for multistate systems with external factors," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 49-57.
    18. Aliee, Hananeh & Borgonovo, Emanuele & Glaß, Michael & Teich, Jürgen, 2017. "On the Boolean extension of the Birnbaum importance to non-coherent systems," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 191-200.
    19. Sedlacek, Peter & Zaitseva, Elena & Levashenko, Vitaly & Kvassay, Miroslav, 2021. "Critical state of non-coherent multi-state system," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    20. Yves Dutuit & Antoine Rauzy, 2014. "Importance factors of coherent systems: A review," Journal of Risk and Reliability, , vol. 228(3), pages 313-323, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:118:y:2013:i:c:p:61-70. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.