IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v95y2010i7p707-715.html
   My bibliography  Save this article

Extension of ISA TR84.00.02 PFD equations to KooN architectures

Author

Listed:
  • Oliveira, Luiz Fernando
  • Abramovitch, Rafael Nelson

Abstract

Simplified equations for PFD evaluation of the most used architectures are given in ISA TR84.00.02-2002 document. This paper introduces a generalization of those equations for applications to any KooN architecture. The meaning of each individual term in the derived equations is explained. To strengthen their validity, several comparisons are made between their results and those of a numerical integration model for PFD assessment. The results show that the values obtained with the generalized equations are very close to those of the numerical model, even for highly redundant configurations. Comparisons are also made with the analytical equations given in IEC 61508. It is argued that the ISA equations are conceptually more consistent than those of IEC 61508 even though the numerical differences between the results are not significant in most practical cases. Overall, the results indicate that the generalized KooN PFD equations derived here may be applied to systems with higher redundancy, thus partly contradicting suggestions made in the above ISA reference that such equations should only be used for the simplest configurations. Some specific practical situations to which they cannot be applied are also pointed out.

Suggested Citation

  • Oliveira, Luiz Fernando & Abramovitch, Rafael Nelson, 2010. "Extension of ISA TR84.00.02 PFD equations to KooN architectures," Reliability Engineering and System Safety, Elsevier, vol. 95(7), pages 707-715.
  • Handle: RePEc:eee:reensy:v:95:y:2010:i:7:p:707-715
    DOI: 10.1016/j.ress.2010.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832010000220
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2010.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dutuit, Y. & Innal, F. & Rauzy, A. & Signoret, J.-P., 2008. "Probabilistic assessments in relationship with safety integrity levels by using Fault Trees," Reliability Engineering and System Safety, Elsevier, vol. 93(12), pages 1867-1876.
    2. Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2009. "Modelling and optimization of proof testing policies for safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 838-854.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alizadeh, Siamak & Sriramula, Srinivas, 2018. "Impact of common cause failure on reliability performance of redundant safety related systems subject to process demand," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 129-150.
    2. Mechri, Walid & Simon, Christophe & BenOthman, Kamel, 2015. "Switching Markov chains for a holistic modeling of SIS unavailability," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 212-222.
    3. Xu, Ming & Chen, Tao & Yang, Xianhui, 2012. "The effect of parameter uncertainty on achieved safety integrity of safety system," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 15-23.
    4. Cui, Lin & Shu, Yidan & Wang, Zhaohui & Zhao, Jinsong & Qiu, Tong & Sun, Wenyong & Wei, Zhenqiang, 2012. "HASILT: An intelligent software platform for HAZOP, LOPA, SRS and SIL verification," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 56-64.
    5. Tang, Zhang-Chun & Zuo, Ming J. & Xiao, Ningcong, 2016. "An efficient method for evaluating the effect of input parameters on the integrity of safety systems," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 111-123.
    6. Azizpour, Hooshyar & Lundteigen, Mary Ann, 2019. "Analysis of simplification in Markov-based models for performance assessment of Safety Instrumented System," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 252-260.
    7. Vaurio, Jussi K., 2011. "Unavailability equations for k-out-of-n systems," Reliability Engineering and System Safety, Elsevier, vol. 96(2), pages 350-352.
    8. Innal, Fares & Dutuit, Yves & Chebila, Mourad, 2015. "Safety and operational integrity evaluation and design optimization of safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 32-50.
    9. Eisinger, S. & Oliveira, L.F., 2021. "Evaluating the safety integrity of safety systems for all values of the demand rate," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    10. Gabriel, Angelito & Ozansoy, Cagil & Shi, Juan, 2018. "Developments in SIL determination and calculation," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 148-161.
    11. Ding, Long & Wang, Hong & Kang, Kai & Wang, Kai, 2014. "A novel method for SIL verification based on system degradation using reliability block diagram," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 36-45.
    12. Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2011. "Modeling safety instrumented systems with MooN voting architectures addressing system reconfiguration for testing," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 545-563.
    13. Meng, Huixing & Kloul, Leïla & Rauzy, Antoine, 2018. "Modeling patterns for reliability assessment of safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 111-123.
    14. Innal, Fares & Lundteigen, Mary Ann & Liu, Yiliu & Barros, Anne, 2016. "PFDavg generalized formulas for SIS subject to partial and full periodic tests based on multi-phase Markov models," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 160-170.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alizadeh, Siamak & Sriramula, Srinivas, 2018. "Impact of common cause failure on reliability performance of redundant safety related systems subject to process demand," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 129-150.
    2. Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2011. "Modeling safety instrumented systems with MooN voting architectures addressing system reconfiguration for testing," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 545-563.
    3. Zhang, Aibo & Srivastav, Himanshu & Barros, Anne & Liu, Yiliu, 2021. "Study of testing and maintenance strategies for redundant final elements in SIS with imperfect detection of degraded state," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    4. Mechri, Walid & Simon, Christophe & BenOthman, Kamel, 2015. "Switching Markov chains for a holistic modeling of SIS unavailability," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 212-222.
    5. Florent Brissaud & Anne Barros & Christophe Bérenguer, 2012. "Probability of failure on demand of safety systems: impact of partial test distribution," Journal of Risk and Reliability, , vol. 226(4), pages 426-436, August.
    6. Son, Kwang Seop & Seong, Seung Hwan & Kang, Hyun Gook & Jang, Gwi Sook, 2020. "Development of state-based integrated dependability model of RPS in NPPs considering CCF and periodic testing effects at the early design phase," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    7. Gabriel, Angelito & Ozansoy, Cagil & Shi, Juan, 2018. "Developments in SIL determination and calculation," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 148-161.
    8. Chuan Wang & Yupeng Liu & Wen Hou & Chao Yu & Guorong Wang & Yuyan Zheng, 2021. "Reliability and availability modeling of Subsea Autonomous High Integrity Pressure Protection System with partial stroke test by Dynamic Bayesian," Journal of Risk and Reliability, , vol. 235(2), pages 268-281, April.
    9. Lijie, Chen & Tao, Tang & Xianqiong, Zhao & Schnieder, Eckehard, 2012. "Verification of the safety communication protocol in train control system using colored Petri net," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 8-18.
    10. Liu, Yiliu & Rausand, Marvin, 2016. "Proof-testing strategies induced by dangerous detected failures of safety-instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 366-372.
    11. Hokstad, Per, 2014. "Demand rate and risk reduction for safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 12-20.
    12. Jin, Hui & Rausand, Marvin, 2014. "Reliability of safety-instrumented systems subject to partial testing and common-cause failures," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 146-151.
    13. Kiswendsida Abel Ouedraogo & Julie Beugin & El‐Miloudi El‐Koursi & Joffrey Clarhaut & Dominique Renaux & Frederic Lisiecki, 2018. "Toward an Application Guide for Safety Integrity Level Allocation in Railway Systems," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1634-1655, August.
    14. Meng, Huixing & Kloul, Leïla & Rauzy, Antoine, 2018. "Modeling patterns for reliability assessment of safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 111-123.
    15. KanÄ ev, DuÅ¡ko & Gjorgiev, Blaže & Volkanovski, Andrija & ÄŒepin, Marko, 2016. "Time-dependent unavailability of equipment in an ageing NPP: Sensitivity study of a developed model," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 11-20.
    16. Innal, Fares & Lundteigen, Mary Ann & Liu, Yiliu & Barros, Anne, 2016. "PFDavg generalized formulas for SIS subject to partial and full periodic tests based on multi-phase Markov models," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 160-170.
    17. Zhang, Aibo & Hao, Songhua & Li, Peng & Xie, Min & Liu, Yiliu, 2022. "Performance modeling for condition-based activation of the redundant safety system subject to harmful tests," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    18. W Mechri & C Simon & K Ben Othman, 2011. "Uncertainty analysis of common cause failure in safety instrumented systems," Journal of Risk and Reliability, , vol. 225(4), pages 450-460, December.
    19. Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2012. "Multi-objective optimization of design and testing of safety instrumented systems with MooN voting architectures using a genetic algorithm," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 45-60.
    20. KanÄ ev, DuÅ¡ko & ÄŒepin, Marko & Gjorgiev, Blaže, 2014. "Development and application of a living probabilistic safety assessment tool: Multi-objective multi-dimensional optimization of surveillance requirements in NPPs considering their ageing," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 135-147.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:95:y:2010:i:7:p:707-715. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.