IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v145y2016icp366-372.html
   My bibliography  Save this article

Proof-testing strategies induced by dangerous detected failures of safety-instrumented systems

Author

Listed:
  • Liu, Yiliu
  • Rausand, Marvin

Abstract

Some dangerous failures of safety-instrumented systems (SISs) are detected almost immediately by diagnostic self-testing as dangerous detected (DD) failures, whereas other dangerous failures can only be detected by proof-testing, and are therefore called dangerous undetected (DU) failures. Some items may have a DU- and a DD-failure at the same time. After the repair of a DD-failure is completed, the maintenance team has two options: to perform an insert proof test for DU-failure or not. If an insert proof test is performed, it is necessary to decide whether the next scheduled proof test should be postponed or performed at the scheduled time. This paper analyzes the effects of different testing strategies on the safety performance of a single channel of a SIS. The safety performance is analyzed by Petri nets and by approximation formulas and the results obtained by the two approaches are compared. It is shown that insert testing improves the safety performance of the channel, but the feasibility and cost of the strategy may be a hindrance to recommend insert testing.

Suggested Citation

  • Liu, Yiliu & Rausand, Marvin, 2016. "Proof-testing strategies induced by dangerous detected failures of safety-instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 366-372.
  • Handle: RePEc:eee:reensy:v:145:y:2016:i:c:p:366-372
    DOI: 10.1016/j.ress.2015.06.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183201500215X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2015.06.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Yiliu, 2014. "Optimal staggered testing strategies for heterogeneously redundant safety systems," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 65-71.
    2. Liu, Yiliu & Rausand, Marvin, 2013. "Reliability effects of test strategies on safety-instrumented systems in different demand modes," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 235-243.
    3. Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2011. "Modeling safety instrumented systems with MooN voting architectures addressing system reconfiguration for testing," Reliability Engineering and System Safety, Elsevier, vol. 96(5), pages 545-563.
    4. F Innal & Y Dutuit & A Rauzy & J-P Signoret, 2010. "New insight into the average probability of failure on demand and the probability of dangerous failure per hour of safety instrumented systems," Journal of Risk and Reliability, , vol. 224(2), pages 75-86, June.
    5. Innal, Fares & Dutuit, Yves & Chebila, Mourad, 2015. "Safety and operational integrity evaluation and design optimization of safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 32-50.
    6. Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2009. "Modelling and optimization of proof testing policies for safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 94(4), pages 838-854.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Azizpour, Hooshyar & Lundteigen, Mary Ann, 2019. "Analysis of simplification in Markov-based models for performance assessment of Safety Instrumented System," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 252-260.
    2. Zhang, Aibo & Zhang, Tieling & Barros, Anne & Liu, Yiliu, 2020. "Optimization of maintenances following proof tests for the final element of a safety-instrumented system," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    3. Wu, Shengnan & Zhang, Laibin & Zheng, Wenpei & Liu, Yiliu & Lundteigen, Mary Ann, 2019. "Reliability modeling of subsea SISs partial testing subject to delayed restoration," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    4. Wu, Shengnan & Zhang, Laibin & Barros, Anne & Zheng, Wenpei & Liu, Yiliu, 2018. "Performance analysis for subsea blind shear ram preventers subject to testing strategies," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 281-298.
    5. Granig, Wolfgang & Faller, Lisa-Marie & Hammerschmidt, Dirk & Zangl, Hubert, 2019. "Dependability considerations of redundant sensor systems," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    6. Zhang, Aibo & Srivastav, Himanshu & Barros, Anne & Liu, Yiliu, 2021. "Study of testing and maintenance strategies for redundant final elements in SIS with imperfect detection of degraded state," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    7. Meng, Huixing & Kloul, Leïla & Rauzy, Antoine, 2018. "Modeling patterns for reliability assessment of safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 111-123.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Aibo & Hao, Songhua & Li, Peng & Xie, Min & Liu, Yiliu, 2022. "Performance modeling for condition-based activation of the redundant safety system subject to harmful tests," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    2. Alizadeh, Siamak & Sriramula, Srinivas, 2018. "Impact of common cause failure on reliability performance of redundant safety related systems subject to process demand," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 129-150.
    3. Longhi, Antonio Eduardo Bier & Pessoa, Artur Alves & Garcia, Pauli Adriano de Almada, 2015. "Multiobjective optimization of strategies for operation and testing of low-demand safety instrumented systems using a genetic algorithm and fault trees," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 525-538.
    4. Gabriel, Angelito & Ozansoy, Cagil & Shi, Juan, 2018. "Developments in SIL determination and calculation," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 148-161.
    5. Liu, Yiliu, 2014. "Optimal staggered testing strategies for heterogeneously redundant safety systems," Reliability Engineering and System Safety, Elsevier, vol. 126(C), pages 65-71.
    6. Chuan Wang & Yupeng Liu & Wen Hou & Chao Yu & Guorong Wang & Yuyan Zheng, 2021. "Reliability and availability modeling of Subsea Autonomous High Integrity Pressure Protection System with partial stroke test by Dynamic Bayesian," Journal of Risk and Reliability, , vol. 235(2), pages 268-281, April.
    7. Qi, Meng & Kan, Yufeng & Li, Xun & Wang, Xiaoying & Zhao, Dongfeng & Moon, Il, 2020. "Spurious activation and operational integrity evaluation of redundant safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    8. Meng, Huixing & Kloul, Leïla & Rauzy, Antoine, 2018. "Modeling patterns for reliability assessment of safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 111-123.
    9. Torres-Echeverría, A.C. & Martorell, S. & Thompson, H.A., 2012. "Multi-objective optimization of design and testing of safety instrumented systems with MooN voting architectures using a genetic algorithm," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 45-60.
    10. Zhang, Aibo & Srivastav, Himanshu & Barros, Anne & Liu, Yiliu, 2021. "Study of testing and maintenance strategies for redundant final elements in SIS with imperfect detection of degraded state," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    11. Mechri, Walid & Simon, Christophe & BenOthman, Kamel, 2015. "Switching Markov chains for a holistic modeling of SIS unavailability," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 212-222.
    12. Martorell, P. & Martón, I. & Sánchez, A.I. & Martorell, S., 2017. "Unavailability model for demand-caused failures of safety components addressing degradation by demand-induced stress, maintenance effectiveness and test efficiency," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 18-27.
    13. Cheraghi, Morteza & Taghipour, Sharareh, 2024. "A mathematical optimization model for determining safety integrity levels in process facilities," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    14. Rachid Sal & Rachid Nait-Said & Mouloud Bourareche, 2017. "Dealing with uncertainty in effect analysis of test strategies on safety instrumented system performance," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(2), pages 1945-1958, November.
    15. Wu, Shengnan & Zhang, Laibin & Zheng, Wenpei & Liu, Yiliu & Lundteigen, Mary Ann, 2019. "Reliability modeling of subsea SISs partial testing subject to delayed restoration," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    16. Innal, Fares & Dutuit, Yves & Chebila, Mourad, 2015. "Safety and operational integrity evaluation and design optimization of safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 32-50.
    17. Hokstad, Per, 2014. "Demand rate and risk reduction for safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 127(C), pages 12-20.
    18. Eisinger, S. & Oliveira, L.F., 2021. "Evaluating the safety integrity of safety systems for all values of the demand rate," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    19. Min Zhang & Zhijian Zhang & Ali Mosleh & Sijuan Chen, 2017. "Common cause failure model updating for risk monitoring in nuclear power plants based on alpha factor model," Journal of Risk and Reliability, , vol. 231(3), pages 209-220, June.
    20. Ding, Long & Wang, Hong & Jiang, Jin & Xu, Aidong, 2017. "SIL verification for SRS with diverse redundancy based on system degradation using reliability block diagram," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 170-187.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:145:y:2016:i:c:p:366-372. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.