IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v199y2020ics0951832019308324.html
   My bibliography  Save this article

Architecture assessment for safety critical plant operation using reachability analysis of timed automata

Author

Listed:
  • Gouyon, David
  • Pétin, Jean-François
  • Cochard, Thomas
  • Devic, Catherine

Abstract

This article deals with the validation of critical industrial process architectures from the point of view of safety and operation. During the engineering phases, the objective is to complement conventional safety studies with an approach that focuses on plant operation. In this context, one of the major challenges is to provide a guarantee that the designed architecture will be able to react safely to critical situations and events.

Suggested Citation

  • Gouyon, David & Pétin, Jean-François & Cochard, Thomas & Devic, Catherine, 2020. "Architecture assessment for safety critical plant operation using reachability analysis of timed automata," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:reensy:v:199:y:2020:i:c:s0951832019308324
    DOI: 10.1016/j.ress.2020.106923
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832019308324
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.106923?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Meng, Huixing & Kloul, Leïla & Rauzy, Antoine, 2018. "Modeling patterns for reliability assessment of safety instrumented systems," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 111-123.
    2. Németh, E. & Bartha, T. & Fazekas, Cs. & Hangos, K.M., 2009. "Verification of a primary-to-secondary leaking safety procedure in a nuclear power plant using coloured Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 94(5), pages 942-953.
    3. Lahtinen, J. & Valkonen, J. & Björkman, K. & Frits, J. & Niemelä, I. & Heljanko, K., 2012. "Model checking of safety-critical software in the nuclear engineering domain," Reliability Engineering and System Safety, Elsevier, vol. 105(C), pages 104-113.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cheng, Ruijun & Cheng, Yu & Chen, Dewang & Song, Haifeng, 2021. "Online quantitative safety monitoring approach for unattended train operation system considering stochastic factors," Reliability Engineering and System Safety, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lijie, Chen & Tao, Tang & Xianqiong, Zhao & Schnieder, Eckehard, 2012. "Verification of the safety communication protocol in train control system using colored Petri net," Reliability Engineering and System Safety, Elsevier, vol. 100(C), pages 8-18.
    2. Cheng, Ruijun & Cheng, Yu & Chen, Dewang & Song, Haifeng, 2021. "Online quantitative safety monitoring approach for unattended train operation system considering stochastic factors," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Wang, Qianlin & Han, Jiaqi & Chen, Feng & Hu, Su & Yun, Cheng & Dou, Zhan & Yan, Tingjun & Yang, Guoan, 2024. "Modeling risk characterization networks for chemical processes based on multi-variate data," Energy, Elsevier, vol. 293(C).
    4. Cheng, Ruijun & Zhou, Jin & Chen, Dewang & Song, Yongduan, 2016. "Model-based verification method for solving the parameter uncertainty in the train control system," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 169-182.
    5. Xie, Lin & Lundteigen, Mary Ann & Liu, Yiliu, 2021. "Performance analysis of safety instrumented systems against cascading failures during prolonged demands," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Signoret, Jean-Pierre & Dutuit, Yves & Cacheux, Pierre-Joseph & Folleau, Cyrille & Collas, Stéphane & Thomas, Philippe, 2013. "Make your Petri nets understandable: Reliability block diagrams driven Petri nets," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 61-75.
    7. Zhang, Aibo & Srivastav, Himanshu & Barros, Anne & Liu, Yiliu, 2021. "Study of testing and maintenance strategies for redundant final elements in SIS with imperfect detection of degraded state," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    8. Pakonen, Antti & Buzhinsky, I & Björkman, K, 2021. "Model checking reveals design issues leading to spurious actuation of nuclear instrumentation and control systems," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    9. Wu, Shengnan & Zhang, Laibin & Zheng, Wenpei & Liu, Yiliu & Lundteigen, Mary Ann, 2019. "Reliability modeling of subsea SISs partial testing subject to delayed restoration," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    10. Parhizkar, Tarannom & Vinnem, Jan Erik & Utne, Ingrid Bouwer & Mosleh, Ali, 2021. "Supervised Dynamic Probabilistic Risk Assessment of Complex Systems, Part 1: General Overview," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    11. Yuan, Shuaiqi & Cai, Jitao & Reniers, Genserik & Yang, Ming & Chen, Chao & Wu, Jiansong, 2022. "Safety barrier performance assessment by integrating computational fluid dynamics and evacuation modeling for toxic gas leakage scenarios," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    12. Lahtinen, Jussi & Kuismin, Tuomas & Heljanko, Keijo, 2015. "Verifying large modular systems using iterative abstraction refinement," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 120-130.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:199:y:2020:i:c:s0951832019308324. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.