IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v201y2020ics0951832018314959.html
   My bibliography  Save this article

A Feature Selection-based Approach for the Identification of Critical Components in Complex Technical Infrastructures: Application to the CERN Large Hadron Collider

Author

Listed:
  • Baraldi, Piero
  • Castellano, Andrea
  • Shokry, Ahmed
  • Gentile, Ugo
  • Serio, Luigi
  • Zio, Enrico

Abstract

Complex Technical Infrastructures (CTIs) are large-scale systems made of tens of thousands of interdependent components organized in complex hierarchical architectures. They evolve in time in a way that at one point their functional logic may be more complex than originally designed, and, therefore, traditional reliability/risk importance measures cannot be used for identifying the critical components on which the protection and recovery efforts should be primarily allocated. We propose an approach for identifying the most critical components based on the large amount of operational data collected from the CTI monitoring systems over long time periods and under different operational settings. The underlying idea is to develop binary classifiers to associate different combinations of measured signals to the CTI operating or failed state. The critical CTI components are those whose condition monitoring signals allow optimally classifying the CTI state. To identify the signals and to build the classifier, we consider a feature selection wrapper approach based on the combined use of Support Vector Machine classifiers and the Binary Differential Evolution algorithm for optimization. The approach is successfully applied to a real dataset collected from the CERN (European Centre for Nuclear Research) Large Hadron Collider, a CTI for experiments of physics.

Suggested Citation

  • Baraldi, Piero & Castellano, Andrea & Shokry, Ahmed & Gentile, Ugo & Serio, Luigi & Zio, Enrico, 2020. "A Feature Selection-based Approach for the Identification of Critical Components in Complex Technical Infrastructures: Application to the CERN Large Hadron Collider," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
  • Handle: RePEc:eee:reensy:v:201:y:2020:i:c:s0951832018314959
    DOI: 10.1016/j.ress.2020.106974
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018314959
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2020.106974?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Johansson, Jonas & Hassel, Henrik & Zio, Enrico, 2013. "Reliability and vulnerability analyses of critical infrastructures: Comparing two approaches in the context of power systems," Reliability Engineering and System Safety, Elsevier, vol. 120(C), pages 27-38.
    2. Bokrantz, Jon & Skoogh, Anders & Berlin, Cecilia & Stahre, Johan, 2017. "Maintenance in digitalised manufacturing: Delphi-based scenarios for 2030," International Journal of Production Economics, Elsevier, vol. 191(C), pages 154-169.
    3. Patterson, S.A. & Apostolakis, G.E., 2007. "Identification of critical locations across multiple infrastructures for terrorist actions," Reliability Engineering and System Safety, Elsevier, vol. 92(9), pages 1183-1203.
    4. Eusgeld, Irene & Nan, Cen & Dietz, Sven, 2011. "“System-of-systems†approach for interdependent critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 96(6), pages 679-686.
    5. Li, Y.F. & Sansavini, G. & Zio, E., 2013. "Non-dominated sorting binary differential evolution for the multi-objective optimization of cascading failures protection in complex networks," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 195-205.
    6. Salman, Ayed & Engelbrecht, Andries P. & Omran, Mahamed G.H., 2007. "Empirical analysis of self-adaptive differential evolution," European Journal of Operational Research, Elsevier, vol. 183(2), pages 785-804, December.
    7. Genge, Béla & Kiss, István & Haller, Piroska, 2015. "A system dynamics approach for assessing the impact of cyber attacks on critical infrastructures," International Journal of Critical Infrastructure Protection, Elsevier, vol. 10(C), pages 3-17.
    8. Wu, Baichao & Tang, Aiping & Wu, Jie, 2016. "Modeling cascading failures in interdependent infrastructures under terrorist attacks," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 1-8.
    9. Joon-Hyuck Moon & Sang-Hee Kang & Dong-Hun Ryu & Jae-Lim Chang & Soon-Ryul Nam, 2015. "A Two-Stage Algorithm to Estimate the Fundamental Frequency of Asynchronously Sampled Signals in Power Systems," Energies, MDPI, vol. 8(9), pages 1-14, August.
    10. Chopra, Shauhrat S. & Khanna, Vikas, 2015. "Interconnectedness and interdependencies of critical infrastructures in the US economy: Implications for resilience," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 436(C), pages 865-877.
    11. Zio, E. & Viadana, G., 2011. "Optimization of the inspection intervals of a safety system in a nuclear power plant by Multi-Objective Differential Evolution (MODE)," Reliability Engineering and System Safety, Elsevier, vol. 96(11), pages 1552-1563.
    12. Vicki Bier & Hoa Han & Lorna Zack, 2008. "Models of Interdependent Security along the Milk Supply Chain," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 90(5), pages 1265-1271.
    13. Tao, Tao & Zio, Enrico & Zhao, Wei, 2018. "A novel support vector regression method for online reliability prediction under multi-state varying operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 35-49.
    14. Kjell Hausken, 2019. "Defence and attack of complex interdependent systems," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 70(3), pages 364-376, March.
    15. Rocco S., Claudio M. & Zio, Enrico, 2007. "A support vector machine integrated system for the classification of operation anomalies in nuclear components and systems," Reliability Engineering and System Safety, Elsevier, vol. 92(5), pages 593-600.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & He, Zhichao, 2023. "A multi-objective optimization model for identifying groups of critical elements in a high-speed train," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    2. Ahmed Shokry & Piero Baraldi & Andrea Castellano & Luigi Serio & Enrico Zio, 2021. "Identification of Critical Components in the Complex Technical Infrastructure of the Large Hadron Collider Using Relief Feature Ranking and Support Vector Machines," Energies, MDPI, vol. 14(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rui Peng & Di Wu & Mengyao Sun & Shaomin Wu, 2021. "An attack-defense game on interdependent networks," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 72(10), pages 2331-2341, October.
    2. Li, Qing & Li, Mingchu & Gong, Zhongqiang & Tian, Yuan & Zhang, Runfa, 2022. "Locating and protecting interdependent facilities to hedge against multiple non-cooperative limited choice attackers," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    3. Ahmed Shokry & Piero Baraldi & Andrea Castellano & Luigi Serio & Enrico Zio, 2021. "Identification of Critical Components in the Complex Technical Infrastructure of the Large Hadron Collider Using Relief Feature Ranking and Support Vector Machines," Energies, MDPI, vol. 14(18), pages 1-19, September.
    4. Ghorbani-Renani, Nafiseh & González, Andrés D. & Barker, Kash & Morshedlou, Nazanin, 2020. "Protection-interdiction-restoration: Tri-level optimization for enhancing interdependent network resilience," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    5. Almoghathawi, Yasser & Selim, Shokri & Barker, Kash, 2023. "Community structure recovery optimization for partial disruption, functionality, and restoration in interdependent networks," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    6. Simon, Jay & Omar, Ayman, 2020. "Cybersecurity investments in the supply chain: Coordination and a strategic attacker," European Journal of Operational Research, Elsevier, vol. 282(1), pages 161-171.
    7. Wang, Shuliang & Gu, Xifeng & Luan, Shengyang & Zhao, Mingwei, 2021. "Resilience analysis of interdependent critical infrastructure systems considering deep learning and network theory," International Journal of Critical Infrastructure Protection, Elsevier, vol. 35(C).
    8. Chen, Shun & Zhao, Xudong & Chen, Zhilong & Hou, Benwei & Wu, Yipeng, 2022. "A game-theoretic method to optimize allocation of defensive resource to protect urban water treatment plants against physical attacks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 36(C).
    9. Wu, Baichao & Tang, Aiping & Wu, Jie, 2016. "Modeling cascading failures in interdependent infrastructures under terrorist attacks," Reliability Engineering and System Safety, Elsevier, vol. 147(C), pages 1-8.
    10. Chaoqi, Fu & Yangjun, Gao & Jilong, Zhong & Yun, Sun & Pengtao, Zhang & Tao, Wu, 2021. "Attack-defense game for critical infrastructure considering the cascade effect," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    11. Argenti, Francesca & Landucci, Gabriele & Reniers, Genserik & Cozzani, Valerio, 2018. "Vulnerability assessment of chemical facilities to intentional attacks based on Bayesian Network," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 515-530.
    12. Gabriel Kuper & Fabio Massacci & Woohyun Shim & Julian Williams, 2020. "Who Should Pay for Interdependent Risk? Policy Implications for Security Interdependence Among Airports," Risk Analysis, John Wiley & Sons, vol. 40(5), pages 1001-1019, May.
    13. Valcamonico, Dario & Sansavini, Giovanni & Zio, Enrico, 2020. "Cooperative co-evolutionary approach to optimize recovery for improving resilience in multi-communities," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    14. Ouyang, Min, 2017. "A mathematical framework to optimize resilience of interdependent critical infrastructure systems under spatially localized attacks," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1072-1084.
    15. Seyed Alireza Hasheminasab & Behrouz Tork Ladani, 2018. "Security Investment in Contagious Networks," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1559-1575, August.
    16. Almoghathawi, Yasser & Barker, Kash & Albert, Laura A., 2019. "Resilience-driven restoration model for interdependent infrastructure networks," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 12-23.
    17. Wang, Weiping & Yang, Saini & Hu, Fuyu & Stanley, H. Eugene & He, Shuai & Shi, Mimi, 2018. "An approach for cascading effects within critical infrastructure systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 510(C), pages 164-177.
    18. Bhandari, Pratik & Creighton, Douglas & Gong, Jinzhe & Boyle, Carol & Law, Kris M.Y., 2023. "Evolution of cyber-physical-human water systems: Challenges and gaps," Technological Forecasting and Social Change, Elsevier, vol. 191(C).
    19. Hausken, Kjell, 2017. "Defense and attack for interdependent systems," European Journal of Operational Research, Elsevier, vol. 256(2), pages 582-591.
    20. Dong, Zhengcheng & Tian, Meng & Li, Xin & Lai, Jingang & Tang, Ruoli, 2022. "Mitigating cascading failures of spatially embedded cyber–physical power systems by adding additional information links," Reliability Engineering and System Safety, Elsevier, vol. 225(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:201:y:2020:i:c:s0951832018314959. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.