IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v174y2018icp53-59.html
   My bibliography  Save this article

Failure-mode importance measures in structural system with multiple failure modes and its estimation using copulaAuthor-Name: He, Liangli

Author

Listed:
  • Lu, Zhenzhou
  • Xinyao Li,

Abstract

In the structural reliability analysis, there exist multiple failure modes. Influence of each failure mode on the structural system reliability needs to be considered, because it is significant for simplifying the system model and improving the performance of the system. By using the concepts of the importance measures(IM) in probability risk assessment (PRA), the importance indices in PRA are extended to measure the failure mode contribution to the structural system reliability, and the analytical solutions of the failure mode importance measure for the parallel and series structural systems are derived firstly. Then, copula method is proposed to estimate the importance indices for the nested hybrid structural systems. At last, one numerical example with a parallel structure and two engineering examples are employed to analyze the failure mode importance and to test the two estimates based on the analytical solution and the copula method. Result indicates that five PRA importance indices can well reflect the failure mode importance. It also shows that the copula method is highly suitable for computing PRA IMs in the intricate structural systems.

Suggested Citation

  • Lu, Zhenzhou & Xinyao Li,, 2018. "Failure-mode importance measures in structural system with multiple failure modes and its estimation using copulaAuthor-Name: He, Liangli," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 53-59.
  • Handle: RePEc:eee:reensy:v:174:y:2018:i:c:p:53-59
    DOI: 10.1016/j.ress.2018.02.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017306695
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.02.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Pan & Lu, Zhenzhou & Zhang, Kaichao & Xiao, Sinan & Yue, Zhufeng, 2018. "Copula-based decomposition approach for the derivative-based sensitivity of variance contributions with dependent variables," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 437-450.
    2. Bichon, Barron J. & McFarland, John M. & Mahadevan, Sankaran, 2011. "Efficient surrogate models for reliability analysis of systems with multiple failure modes," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1386-1395.
    3. Edward Frees & Emiliano Valdez, 1998. "Understanding Relationships Using Copulas," North American Actuarial Journal, Taylor & Francis Journals, vol. 2(1), pages 1-25.
    4. Dutuit, Yves & Rauzy, Antoine, 2015. "On the extension of Importance Measures to complex components," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 161-168.
    5. Borgonovo, E., 2007. "Differential, criticality and Birnbaum importance measures: An application to basic event, groups and SSCs in event trees and binary decision diagrams," Reliability Engineering and System Safety, Elsevier, vol. 92(10), pages 1458-1467.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Haihe & Wang, Pan & Huang, Xiaoyu & Zhang, Zheng & Zhou, Changcong & Yue, Zhufeng, 2021. "Vine copula-based parametric sensitivity analysis of failure probability-based importance measure in the presence of multidimensional dependencies," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Nagode, Marko & Oman, Simon & Klemenc, Jernej & Panić, Branislav, 2023. "Gumbel mixture modelling for multiple failure data," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Liu, Xiang-dong & Pan, Fei & Cai, Wen-li & Peng, Rui, 2020. "Correlation and risk measurement modeling: A Markov-switching mixed Clayton copula approach," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    4. Zhang, Yi & Gomes, António Topa & Beer, Michael & Neumann, Ingo & Nackenhorst, Udo & Kim, Chul-Woo, 2019. "Reliability analysis with consideration of asymmetrically dependent variables: Discussion and application to geotechnical examples," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 261-277.
    5. Lu, Shaoqi & Shi, Daimin & Xiao, Hui, 2019. "Reliability of sliding window systems with two failure modes," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 366-376.
    6. Takeda, Satoshi & Kitada, Takanori, 2023. "Importance measure evaluation based on sensitivity coefficient for probabilistic risk assessment," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    7. Peng, Rui & He, Xiaofeng & Zhong, Chao & Kou, Gang & Xiao, Hui, 2022. "Preventive maintenance for heterogeneous parallel systems with two failure modes," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    8. Li, Wanhong & Liu, Guangzhong, 2022. "Dynamic failure mode analysis approach based on an improved Taguchi process capability index," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    9. Liu, Wenli & Chen, Elton J. & Yao, Erlei & Wang, Yanyu & Chen, Yangyang, 2021. "Reliability analysis of face stability for tunnel excavation in a dependent system," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    10. Guan, Xiaoshu & Xiang, Zhengliang & Bao, Yuequan & Li, Hui, 2022. "Structural dominant failure modes searching method based on deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 219(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dui, Hongyan & Wu, Shaomin & Zhao, Jiangbin, 2021. "Some extensions of the component maintenance priority," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    2. Aliee, Hananeh & Borgonovo, Emanuele & Glaß, Michael & Teich, Jürgen, 2017. "On the Boolean extension of the Birnbaum importance to non-coherent systems," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 191-200.
    3. Fabrizio Durante & Erich Klement & Carlo Sempi & Manuel Úbeda-Flores, 2010. "Measures of non-exchangeability for bivariate random vectors," Statistical Papers, Springer, vol. 51(3), pages 687-699, September.
    4. Furman, Edward & Landsman, Zinoviy, 2010. "Multivariate Tweedie distributions and some related capital-at-risk analyses," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 351-361, April.
    5. Jevtić, P. & Hurd, T.R., 2017. "The joint mortality of couples in continuous time," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 90-97.
    6. Albrecher Hansjörg & Kantor Josef, 2002. "Simulation of ruin probabilities for risk processes of Markovian type," Monte Carlo Methods and Applications, De Gruyter, vol. 8(2), pages 111-128, December.
    7. Dominik Kortschak & Hansjörg Albrecher, 2009. "Asymptotic Results for the Sum of Dependent Non-identically Distributed Random Variables," Methodology and Computing in Applied Probability, Springer, vol. 11(3), pages 279-306, September.
    8. Hoyle, Edward & Mengütürk, Levent Ali, 2013. "Archimedean survival processes," Journal of Multivariate Analysis, Elsevier, vol. 115(C), pages 1-15.
    9. Menz, Morgane & Gogu, Christian & Dubreuil, Sylvain & Bartoli, Nathalie & Morio, Jérôme, 2020. "Adaptive coupling of reduced basis modeling and Kriging based active learning methods for reliability analyses," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    10. Han, Qinkai & Wang, Tianyang & Chu, Fulei, 2022. "Nonparametric copula modeling of wind speed-wind shear for the assessment of height-dependent wind energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    11. Einmahl, J.H.J. & Krajina, A. & Segers, J., 2011. "An M-Estimator for Tail Dependence in Arbitrary Dimensions," Discussion Paper 2011-013, Tilburg University, Center for Economic Research.
    12. Y. Malevergne & D. Sornette, 2003. "Testing the Gaussian copula hypothesis for financial assets dependences," Quantitative Finance, Taylor & Francis Journals, vol. 3(4), pages 231-250.
    13. Tai-Hsin Huang & Nan-Hung Liu & Subal C. Kumbhakar, 2018. "Joint estimation of the Lerner index and cost efficiency using copula methods," Empirical Economics, Springer, vol. 54(2), pages 799-822, March.
    14. Benoumechiara Nazih & Bousquet Nicolas & Michel Bertrand & Saint-Pierre Philippe, 2020. "Detecting and modeling critical dependence structures between random inputs of computer models," Dependence Modeling, De Gruyter, vol. 8(1), pages 263-297, January.
    15. Shapiro, Arnold F., 2004. "Fuzzy logic in insurance," Insurance: Mathematics and Economics, Elsevier, vol. 35(2), pages 399-424, October.
    16. Hobæk Haff, Ingrid, 2012. "Comparison of estimators for pair-copula constructions," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 91-105.
    17. Trottini, Mario & Muralidhar, Krish & Sarathy, Rathindra, 2011. "Maintaining tail dependence in data shuffling using t copula," Statistics & Probability Letters, Elsevier, vol. 81(3), pages 420-428, March.
    18. Hofert, Marius & Mächler, Martin & McNeil, Alexander J., 2012. "Likelihood inference for Archimedean copulas in high dimensions under known margins," Journal of Multivariate Analysis, Elsevier, vol. 110(C), pages 133-150.
    19. Quessy, Jean-François, 2021. "A Szekely–Rizzo inequality for testing general copula homogeneity hypotheses," Journal of Multivariate Analysis, Elsevier, vol. 186(C).
    20. Puccetti Giovanni & Scherer Matthias, 2018. "Copulas, credit portfolios, and the broken heart syndrome," Dependence Modeling, De Gruyter, vol. 6(1), pages 114-130, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:174:y:2018:i:c:p:53-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.