IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v185y2019icp261-277.html
   My bibliography  Save this article

Reliability analysis with consideration of asymmetrically dependent variables: Discussion and application to geotechnical examples

Author

Listed:
  • Zhang, Yi
  • Gomes, António Topa
  • Beer, Michael
  • Neumann, Ingo
  • Nackenhorst, Udo
  • Kim, Chul-Woo

Abstract

The consideration of multivariate models in the reliability analysis is quite essential from practical perspective. In principle, complete information regarding the joint probability distribution function should be known in prior to the analysis. However, in real practice, only the marginal distribution and covariance matrix are known in most cases. Such incomplete probabilistic information could lead to dubious results if dependences are not fully catered. Asymmetric dependence is one of these factors influencing the quality of reliability analysis. In this paper, the influences of asymmetric dependences to the reliability problem are investigated. The copula theory as well as the concept of asymmetric dependences is briefly introduced. The techniques of constructing asymmetric copulas are, thereafter, provided in details. Geotechnical problem is selected in this study as examples in the reliability analysis. Based on the given information, a group of symmetric and asymmetric copulas are selected to model the dependences between cohesion and friction angle, the parameters more commonly used to characterize soil strength. The reliability analysis of a continuous spread footing and an infinite slope are then presented to demonstrate the influence of asymmetric dependences on reliability. The results showed that the failure probabilities of the investigated geotechnical problems are very sensitive to the adopted dependence structure, either symmetrically or asymmetrically. The commonly applied one parameter symmetric copulas, such as Archimedean copulas, may underestimate the failure probabilities. Furthermore, the asymmetric copulas are more powerful in characterizing the tail dependences structures of variables especially for asymmetric dependent variables.

Suggested Citation

  • Zhang, Yi & Gomes, António Topa & Beer, Michael & Neumann, Ingo & Nackenhorst, Udo & Kim, Chul-Woo, 2019. "Reliability analysis with consideration of asymmetrically dependent variables: Discussion and application to geotechnical examples," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 261-277.
  • Handle: RePEc:eee:reensy:v:185:y:2019:i:c:p:261-277
    DOI: 10.1016/j.ress.2018.12.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018307257
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.12.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mazo, Gildas & Girard, Stéphane & Forbes, Florence, 2015. "A class of multivariate copulas based on products of bivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 363-376.
    2. Lu, Zhenzhou & Xinyao Li,, 2018. "Failure-mode importance measures in structural system with multiple failure modes and its estimation using copulaAuthor-Name: He, Liangli," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 53-59.
    3. Zhang, Yi, 2018. "Investigating dependencies among oil price and tanker market variables by copula-based multivariate models," Energy, Elsevier, vol. 161(C), pages 435-446.
    4. Trivedi, Pravin K. & Zimmer, David M., 2007. "Copula Modeling: An Introduction for Practitioners," Foundations and Trends(R) in Econometrics, now publishers, vol. 1(1), pages 1-111, April.
    5. Wang, Fan & Li, Heng, 2018. "System reliability under prescribed marginals and correlations: Are we correct about the effect of correlations?," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 94-104.
    6. Charpentier, A. & Fougères, A.-L. & Genest, C. & Nešlehová, J.G., 2014. "Multivariate Archimax copulas," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 118-136.
    7. Wang, Cao & Zhang, Hao & Li, Quanwang, 2017. "Reliability assessment of aging structures subjected to gradual and shock deteriorations," Reliability Engineering and System Safety, Elsevier, vol. 161(C), pages 78-86.
    8. Liebscher, Eckhard, 2008. "Construction of asymmetric multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 99(10), pages 2234-2250, November.
    9. Yanqin Fan & Andrew J. Patton, 2014. "Copulas in Econometrics," Annual Review of Economics, Annual Reviews, vol. 6(1), pages 179-200, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alibeikloo, Mehrnaz & Khabbaz, Hadi & Fatahi, Behzad, 2022. "Random Field Reliability Analysis for Time-Dependent Behaviour of Soft Soils Considering Spatial Variability of Elastic Visco-Plastic Parameters," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    2. Murat Ozkut, 2022. "Comparison of the replacement policy in k-out-of-n systems having dependent components," Journal of Risk and Reliability, , vol. 236(1), pages 125-137, February.
    3. Eryilmaz, Serkan & Ozkut, Murat, 2020. "Optimization problems for a parallel system with multiple types of dependent components," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    4. Alibeikloo, Mehrnaz & Khabbaz, Hadi & Fatahi, Behzad & Le, Thu Minh, 2021. "Reliability Assessment for Time-Dependent Behaviour of Soft Soils Considering Cross Correlation between Visco-Plastic Model Parameters," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    5. Zhao, Tengyuan & Wang, Yu, 2020. "Non-parametric simulation of non-stationary non-gaussian 3D random field samples directly from sparse measurements using signal decomposition and Markov Chain Monte Carlo (MCMC) simulation," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    6. Zarghami, Seyed Ashkan & Dumrak, Jantanee, 2021. "Aleatory uncertainty quantification of project resources and its application to project scheduling," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    7. Ramadhani, Adhitya & Khan, Faisal & Colbourne, Bruce & Ahmed, Salim & Taleb-Berrouane, Mohammed, 2022. "Resilience assessment of offshore structures subjected to ice load considering complex dependencies," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    8. Liu, Fuchao & Wei, Pengfei & Tang, Chenghu & Wang, Pan & Yue, Zhufeng, 2019. "Global sensitivity analysis for multivariate outputs based on multiple response Gaussian process model," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 287-298.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Di Bernardino Elena & Rullière Didier, 2016. "On an asymmetric extension of multivariate Archimedean copulas based on quadratic form," Dependence Modeling, De Gruyter, vol. 4(1), pages 1-20, December.
    2. Arbel, Julyan & Crispino, Marta & Girard, Stéphane, 2019. "Dependence properties and Bayesian inference for asymmetric multivariate copulas," Journal of Multivariate Analysis, Elsevier, vol. 174(C).
    3. Chaoubi, Ihsan & Cossette, Hélène & Marceau, Etienne & Robert, Christian Y., 2021. "Hierarchical copulas with Archimedean blocks and asymmetric between-block pairs," Computational Statistics & Data Analysis, Elsevier, vol. 154(C).
    4. Liu, Xiang-dong & Pan, Fei & Cai, Wen-li & Peng, Rui, 2020. "Correlation and risk measurement modeling: A Markov-switching mixed Clayton copula approach," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    5. Saminger-Platz Susanne & De Jesús Arias-García José & Mesiar Radko & Klement Erich Peter, 2017. "Characterizations of bivariate conic, extreme value, and Archimax copulas," Dependence Modeling, De Gruyter, vol. 5(1), pages 45-58, January.
    6. Sabrina Mulinacci, 2022. "A Marshall-Olkin Type Multivariate Model with Underlying Dependent Shocks," Methodology and Computing in Applied Probability, Springer, vol. 24(4), pages 2455-2484, December.
    7. Kahkashan Afrin & Ashif S Iquebal & Mostafa Karimi & Allyson Souris & Se Yoon Lee & Bani K Mallick, 2020. "Directionally dependent multi-view clustering using copula model," PLOS ONE, Public Library of Science, vol. 15(10), pages 1-18, October.
    8. Sabrina Mulinacci, 2017. "A systemic shock model for too big to fail financial institutions," Papers 1704.02160, arXiv.org, revised Apr 2017.
    9. Martin Bladt & Alexander J. McNeil, 2020. "Time series copula models using d-vines and v-transforms," Papers 2006.11088, arXiv.org, revised Jul 2021.
    10. Elena Di Bernardino & Didier Rullière, 2016. "On an asymmetric extension of multivariate Archimedean copulas based on quadratic form," Working Papers hal-01147778, HAL.
    11. Bladt, Martin & McNeil, Alexander J., 2022. "Time series copula models using d-vines and v-transforms," Econometrics and Statistics, Elsevier, vol. 24(C), pages 27-48.
    12. Savinov, Evgeniy & Shamraeva, Victoria, 2023. "On a Rosenblatt-type transformation of multivariate copulas," Econometrics and Statistics, Elsevier, vol. 25(C), pages 39-48.
    13. Jozef Baruník & Tobias Kley, 2019. "Quantile coherency: A general measure for dependence between cyclical economic variables," The Econometrics Journal, Royal Economic Society, vol. 22(2), pages 131-152.
    14. Koen Decancq, 2020. "Measuring cumulative deprivation and affluence based on the diagonal dependence diagram," METRON, Springer;Sapienza Università di Roma, vol. 78(2), pages 103-117, August.
    15. Wu, Shaomin, 2014. "Construction of asymmetric copulas and its application in two-dimensional reliability modelling," European Journal of Operational Research, Elsevier, vol. 238(2), pages 476-485.
    16. Jörg Schwiebert, 2016. "Multinomial choice models based on Archimedean copulas," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(3), pages 333-354, July.
    17. Zongwu Cai & Guannan Liu & Wei Long & Xuelong Luo, 2024. "Semiparametric Conditional Mixture Copula Models with Copula Selection," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 202401, University of Kansas, Department of Economics, revised Jan 2024.
    18. Raj Chetty & Nathaniel Hendren & Patrick Kline & Emmanuel Saez, 2014. "Where is the land of Opportunity? The Geography of Intergenerational Mobility in the United States," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 129(4), pages 1553-1623.
    19. Salmon, Claire & Tanguy, Jeremy, 2016. "Rural Electrification and Household Labor Supply: Evidence from Nigeria," World Development, Elsevier, vol. 82(C), pages 48-68.
    20. Durante Fabrizio & Sánchez Juan Fernández & Sempi Carlo, 2018. "A note on bivariate Archimax copulas," Dependence Modeling, De Gruyter, vol. 6(1), pages 178-182, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:185:y:2019:i:c:p:261-277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.