Gumbel mixture modelling for multiple failure data
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2022.108946
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Franko, Mitja & Nagode, Marko, 2015. "Probability density function of the equivalent stress amplitude using statistical transformation," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 118-125.
- Yu, Weichao & Huang, Weihe & Wen, Kai & Zhang, Jie & Liu, Hongfei & Wang, Kun & Gong, Jing & Qu, Chunxu, 2021. "Subset simulation-based reliability analysis of the corroding natural gas pipeline," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
- Almalki, Saad J. & Nadarajah, Saralees, 2014. "Modifications of the Weibull distribution: A review," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 32-55.
- Branislav Panić & Jernej Klemenc & Marko Nagode, 2020. "Improved Initialization of the EM Algorithm for Mixture Model Parameter Estimation," Mathematics, MDPI, vol. 8(3), pages 1-29, March.
- Gómez, Yolanda M. & Bolfarine, Heleno & Gómez, Héctor W., 2019. "Gumbel distribution with heavy tails and applications to environmental data," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 157(C), pages 115-129.
- Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
- Lu, Zhenzhou & Xinyao Li,, 2018. "Failure-mode importance measures in structural system with multiple failure modes and its estimation using copulaAuthor-Name: He, Liangli," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 53-59.
- Ye, Zhenggeng & Yang, Hui & Cai, Zhiqiang & Si, Shubin & Zhou, Fuli, 2021. "Performance evaluation of serial-parallel manufacturing systems based on the impact of heterogeneous feedstocks on machine degradation," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
- Puppo, L. & Pedroni, N. & Maio, F. Di & Bersano, A. & Bertani, C. & Zio, E., 2021. "A Framework based on Finite Mixture Models and Adaptive Kriging for Characterizing Non-Smooth and Multimodal Failure Regions in a Nuclear Passive Safety System," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- Chehade, Abdallah & Savargaonkar, Mayuresh & Krivtsov, Vasiliy, 2022. "Conditional Gaussian mixture model for warranty claims forecasting," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
- Asadi, Zohreh Soltani & Melchers, Robert E., 2017. "Extreme value statistics for pitting corrosion of old underground cast iron pipes," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 64-71.
- Adumene, Sidum & Khan, Faisal & Adedigba, Sunday & Zendehboudi, Sohrab, 2021. "Offshore system safety and reliability considering microbial influenced multiple failure modes and their interdependencies," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
- Kang, Dongbum & Ko, Kyungnam & Huh, Jongchul, 2015. "Determination of extreme wind values using the Gumbel distribution," Energy, Elsevier, vol. 86(C), pages 51-58.
- Dai, Baorui & Xia, Ye & Li, Qi, 2022. "An extreme value prediction method based on clustering algorithm," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
- Branislav Panić & Jernej Klemenc & Marko Nagode, 2020. "Optimizing the Estimation of a Histogram-Bin Width—Application to the Multivariate Mixture-Model Estimation," Mathematics, MDPI, vol. 8(7), pages 1-30, July.
- Ducros, Florence & Pamphile, Patrick, 2018. "Bayesian estimation of Weibull mixture in heavily censored data setting," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 453-462.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lu, Cheng & Teng, Da & Chen, Jun-Yu & Fei, Cheng-Wei & Keshtegar, Behrooz, 2023. "Adaptive vectorial surrogate modeling framework for multi-objective reliability estimation," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Shuto, Susumu & Amemiya, Takashi, 2022. "Sequential Bayesian inference for Weibull distribution parameters with initial hyperparameter optimization for system reliability estimation," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
- Branislav Panić & Marko Nagode & Jernej Klemenc & Simon Oman, 2022. "On Methods for Merging Mixture Model Components Suitable for Unsupervised Image Segmentation Tasks," Mathematics, MDPI, vol. 10(22), pages 1-22, November.
- Guan, Xiaoshu & Xiang, Zhengliang & Bao, Yuequan & Li, Hui, 2022. "Structural dominant failure modes searching method based on deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
- Starling, James K. & Mastrangelo, Christina & Choe, Youngjun, 2021. "Improving Weibull distribution estimation for generalized Type I censored data using modified SMOTE," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
- Li, Yuanfu & Chen, Yao & Hu, Zhenchao & Zhang, Huisheng, 2023. "Remaining useful life prediction of aero-engine enabled by fusing knowledge and deep learning models," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
- Liu, Jiale & Wang, Huan, 2024. "A brain-inspired energy-efficient Wide Spiking Residual Attention Framework for intelligent fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
- Yuan, Zixia & Xiong, Guojiang & Fu, Xiaofan & Mohamed, Ali Wagdy, 2023. "Improving fault tolerance in diagnosing power system failures with optimal hierarchical extreme learning machine," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
- Lu, Shaoqi & Shi, Daimin & Xiao, Hui, 2019. "Reliability of sliding window systems with two failure modes," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 366-376.
- Kresning, Boma & Hashemi, M. Reza & Shirvani, Amin & Hashemi, Javad, 2024. "Uncertainty of extreme wind and wave loads for marine renewable energy farms in hurricane-prone regions," Renewable Energy, Elsevier, vol. 220(C).
- Costa, Nahuel & Sánchez, Luciano, 2022. "Variational encoding approach for interpretable assessment of remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
- Bakeer, Tammam, 2023. "General partial safety factor theory for the assessment of the reliability of nonlinear structural systems," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Lewis, Austin D. & Groth, Katrina M., 2022. "Metrics for evaluating the performance of complex engineering system health monitoring models," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
- Gerald A. Abantao & Jessa A. Ibañez & Paul Eugene Delfin C. Bundoc & Lean Lorenzo F. Blas & Xaviery N. Penisa & Eugene A. Esparcia & Michael T. Castro & Roger Victor E. Buendia & Karl Ezra S. Pilario , 2024. "Reconceptualizing Reliability Indices as Metrics to Quantify Power Distribution System Resilience," Energies, MDPI, vol. 17(8), pages 1-13, April.
- Yazdi, Mohammad & Khan, Faisal & Abbassi, Rouzbeh & Quddus, Noor & Castaneda-Lopez, Homero, 2022. "A review of risk-based decision-making models for microbiologically influenced corrosion (MIC) in offshore pipelines," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
- Bo, Yimin & Bao, Minglei & Ding, Yi & Hu, Yishuang, 2024. "A DNN-based reliability evaluation method for multi-state series-parallel systems considering semi-Markov process," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
- Li, Haihe & Wang, Pan & Huang, Xiaoyu & Zhang, Zheng & Zhou, Changcong & Yue, Zhufeng, 2021. "Vine copula-based parametric sensitivity analysis of failure probability-based importance measure in the presence of multidimensional dependencies," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
- Chehade, Abdallah & Savargaonkar, Mayuresh & Krivtsov, Vasiliy, 2022. "Conditional Gaussian mixture model for warranty claims forecasting," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
- Talha Arslan, 2021. "An α -Monotone Generalized Log-Moyal Distribution with Applications to Environmental Data," Mathematics, MDPI, vol. 9(12), pages 1-18, June.
- Zheng, Shuwen & Wang, Chong & Zio, Enrico & Liu, Jie, 2024. "Fault detection in complex mechatronic systems by a hierarchical graph convolution attention network based on causal paths," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
More about this item
Keywords
Gumbel mixture model; Parameter estimation; System safety; Failure modelling;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:230:y:2023:i:c:s0951832022005610. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.