IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v169y2018icp437-450.html
   My bibliography  Save this article

Copula-based decomposition approach for the derivative-based sensitivity of variance contributions with dependent variables

Author

Listed:
  • Wang, Pan
  • Lu, Zhenzhou
  • Zhang, Kaichao
  • Xiao, Sinan
  • Yue, Zhufeng

Abstract

Variance-based sensitivity analysis with dependent variables represents how the uncertainties and dependence of variables influence the output uncertainty. Since the distribution parameters of variables are difficult to be given precisely, this work defines the derivative-based sensitivity of variance contribution with respect to the distribution parameters, which reflects how small variation of distribution parameters influences the variance contributions. By introducing the copula functions to describe the dependence of variables, the derivative of variance contributions can be transformed into those of marginal PDF and copula function, which can be defined by kernel function and copula kernel function. Then the derivative-based sensitivity of variance contributions can be decomposed into the independent part and dependent part. Since the derivatives of marginal PDF and copula function can be given analytically, the proposed derivative-based sensitivity can be computed with no additional computational cost, which is seen as the ‘by-product’ of variance-based sensitivity analysis. To calculate the proposed sensitivity, two computational methods, numerical method and SDP (state dependent parameter) method are presented for comparison. Several examples are used to demonstrate the reasonability of the proposed sensitivity and the accuracy of the applied method.

Suggested Citation

  • Wang, Pan & Lu, Zhenzhou & Zhang, Kaichao & Xiao, Sinan & Yue, Zhufeng, 2018. "Copula-based decomposition approach for the derivative-based sensitivity of variance contributions with dependent variables," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 437-450.
  • Handle: RePEc:eee:reensy:v:169:y:2018:i:c:p:437-450
    DOI: 10.1016/j.ress.2017.09.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017300558
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.09.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kleijnen, J.P.C. & Rubinstein, R.Y., 1996. "Optimization and Sensitivity Analysis of Computer Simulation Models by the Score Function Method," Other publications TiSEM 958c9b9a-544f-48f3-a3d1-c, Tilburg University, School of Economics and Management.
    2. Reuven Y. Rubinstein, 1989. "Sensitivity Analysis and Performance Extrapolation for Computer Simulation Models," Operations Research, INFORMS, vol. 37(1), pages 72-81, February.
    3. Mara, Thierry A. & Tarantola, Stefano, 2012. "Variance-based sensitivity indices for models with dependent inputs," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 115-121.
    4. Li, Luyi & Lu, Zhenzhou, 2013. "Importance analysis for models with correlated variables and its sparse grid solution," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 207-217.
    5. Kleijnen, Jack P. C. & Rubinstein, Reuven Y., 1996. "Optimization and sensitivity analysis of computer simulation models by the score function method," European Journal of Operational Research, Elsevier, vol. 88(3), pages 413-427, February.
    6. Krupskii, Pavel & Joe, Harry, 2015. "Structured factor copula models: Theory, inference and computation," Journal of Multivariate Analysis, Elsevier, vol. 138(C), pages 53-73.
    7. Ratto, M. & Pagano, A. & Young, P.C., 2009. "Non-parametric estimation of conditional moments for sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 237-243.
    8. Wang, Pan & Lu, Zhenzhou & Ren, Bo & Cheng, Lei, 2013. "The derivative based variance sensitivity analysis for the distribution parameters and its computation," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 305-315.
    9. Xu, Chonggang & Gertner, George Zdzislaw, 2008. "Uncertainty and sensitivity analysis for models with correlated parameters," Reliability Engineering and System Safety, Elsevier, vol. 93(10), pages 1563-1573.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Haihe & Wang, Pan & Huang, Xiaoyu & Zhang, Zheng & Zhou, Changcong & Yue, Zhufeng, 2021. "Vine copula-based parametric sensitivity analysis of failure probability-based importance measure in the presence of multidimensional dependencies," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    2. Sarazin, Gabriel & Morio, Jérôme & Lagnoux, Agnès & Balesdent, Mathieu & Brevault, Loïc, 2021. "Reliability-oriented sensitivity analysis in presence of data-driven epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    3. Li, Shen & Kim, Do Kyun & Benson, Simon, 2021. "A probabilistic approach to assess the computational uncertainty of ultimate strength of hull girders," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    4. Yicheng Zhou & Zhenzhou Lu & Yan Shi & Kai Cheng, 2019. "A vine copula–based method for analyzing the moment-independent importance measure of the multivariate output," Journal of Risk and Reliability, , vol. 233(3), pages 338-354, June.
    5. Liu, Wenli & Chen, Elton J. & Yao, Erlei & Wang, Yanyu & Chen, Yangyang, 2021. "Reliability analysis of face stability for tunnel excavation in a dependent system," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    6. Lu, Zhenzhou & Xinyao Li,, 2018. "Failure-mode importance measures in structural system with multiple failure modes and its estimation using copulaAuthor-Name: He, Liangli," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 53-59.
    7. Zhang, Dequan & Shen, Shuoshuo & Wu, Jinhui & Wang, Fang & Han, Xu, 2023. "Kinematic trajectory accuracy reliability analysis for industrial robots considering intercorrelations among multi-point positioning errors," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    8. Liu, Fuchao & Wei, Pengfei & Tang, Chenghu & Wang, Pan & Yue, Zhufeng, 2019. "Global sensitivity analysis for multivariate outputs based on multiple response Gaussian process model," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 287-298.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei, Pengfei & Lu, Zhenzhou & Song, Jingwen, 2015. "Variable importance analysis: A comprehensive review," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 399-432.
    2. Wang, Pan & Lu, Zhenzhou & Ren, Bo & Cheng, Lei, 2013. "The derivative based variance sensitivity analysis for the distribution parameters and its computation," Reliability Engineering and System Safety, Elsevier, vol. 119(C), pages 305-315.
    3. Mingbin Ben Feng & Eunhye Song, 2020. "Efficient Nested Simulation Experiment Design via the Likelihood Ratio Method," Papers 2008.13087, arXiv.org, revised May 2024.
    4. Ning-Cong Xiao & Hong-Zhong Huang & Yan-Feng Li & Zhonglai Wang & Xiao-Ling Zhang, 2013. "Non-probabilistic reliability sensitivity analysis of the model of structural systems with interval variables whose state of dependence is determined by constraints," Journal of Risk and Reliability, , vol. 227(5), pages 491-498, October.
    5. Tan, S.Y.G.L. & van Oortmarssen, G.J. & Piersma, N., 2000. "Estimting parameters of a microsimulation model for breast cancer screening using the score function method," Econometric Institute Research Papers EI 2000-35/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    6. Broto, Baptiste & Bachoc, François & Depecker, Marine & Martinez, Jean-Marc, 2019. "Sensitivity indices for independent groups of variables," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 163(C), pages 19-31.
    7. Pesenti, Silvana M. & Millossovich, Pietro & Tsanakas, Andreas, 2019. "Reverse sensitivity testing: What does it take to break the model?," European Journal of Operational Research, Elsevier, vol. 274(2), pages 654-670.
    8. Ge, Qiao & Menendez, Monica, 2017. "Extending Morris method for qualitative global sensitivity analysis of models with dependent inputs," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 28-39.
    9. López-Benito, Alfredo & Bolado-Lavín, Ricardo, 2017. "A case study on global sensitivity analysis with dependent inputs: The natural gas transmission model," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 11-21.
    10. Hao, Wenrui & Lu, Zhenzhou & Wei, Pengfei, 2013. "Uncertainty importance measure for models with correlated normal variables," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 48-58.
    11. Arsham Hossein, 2007. "Monte Carlo Techniques for Parametric Finite Multidimensional Integral Equations," Monte Carlo Methods and Applications, De Gruyter, vol. 13(3), pages 173-195, August.
    12. Millwater, Harry & Singh, Gulshan & Cortina, Miguel, 2012. "Development of a localized probabilistic sensitivity method to determine random variable regional importance," Reliability Engineering and System Safety, Elsevier, vol. 107(C), pages 3-15.
    13. Dang, Ou & Feng, Mingbin & Hardy, Mary R., 2023. "Two-stage nested simulation of tail risk measurement: A likelihood ratio approach," Insurance: Mathematics and Economics, Elsevier, vol. 108(C), pages 1-24.
    14. Kucherenko, S. & Klymenko, O.V. & Shah, N., 2017. "Sobol' indices for problems defined in non-rectangular domains," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 218-231.
    15. Jari Vepsäläinen & Antti Ritari & Antti Lajunen & Klaus Kivekäs & Kari Tammi, 2018. "Energy Uncertainty Analysis of Electric Buses," Energies, MDPI, vol. 11(12), pages 1-29, November.
    16. Wei, Pengfei & Lu, Zhenzhou & Ruan, Wenbin & Song, Jingwen, 2014. "Regional sensitivity analysis using revised mean and variance ratio functions," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 121-135.
    17. Mara, Thierry A. & Becker, William E., 2021. "Polynomial chaos expansion for sensitivity analysis of model output with dependent inputs," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    18. Xie, Xiangzhong & Schenkendorf, René & Krewer, Ulrike, 2019. "Efficient sensitivity analysis and interpretation of parameter correlations in chemical engineering," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 159-173.
    19. Shih, Neng-Hui, 1999. "The sensitivity analysis of binary networks via simulation," European Journal of Operational Research, Elsevier, vol. 114(3), pages 602-609, May.
    20. Tachibana, Minoru, 2022. "Safe haven assets for international stock markets: A regime-switching factor copula approach," Research in International Business and Finance, Elsevier, vol. 60(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:169:y:2018:i:c:p:437-450. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.